Cho tam giác ABC vuông tại A, đường cao AH (HϵBC)
a) Biết AB = 12cm, BC = 20cm. Tính AC, B, AH (góc làm tròn đến độ)
b) Kẻ HE vuông góc AB (EϵAB). Chứng minh: AE.AB=AC2-HC2
c) Kẻ HF vuông góc AC (FϵAC). Chứng minh: AF=AE.tanC
Cho tam giác ABC vuông tại A có đường cao AH.
1) Cho biết AB=3 cm, AC=4 cm. Tính độ dài các đoạn BC,HB,HC,AH
2) Vẽ HE vuông góc với AB tại E, HF vuông góc với AC tại F
a) Chứng minh: AE.EB=HE2
b) Chứng minh: AE.EB+AF.FC=AH2
3) Chứng minh: BE=BC. cos3 B
Cho tam ABC có góc A bằng 90 độ và đường cao AH ( H thuộc BC) kẻ HE và HF lần lượt vuông góc với AB và AC tại E,F
1, chứng minh AEHF là hcn và tính EF , CF
2, tính diện tích tứ giác AEHF
3, tính diện tích tứ giác BEFC
Cho tam giác ABC vuông tại A.Đường cao AH, kẻ HE ,HF lần lượt vuông góc với AB và AC .Chứng minh:
a) EB/EC=(AB/AC)^3
b) BC.BE.BF=AH^3
Cho tam giác ABC vuông tại A.Đường cao AH, kẻ HE ,HF lần lượt vuông góc với AB và AC .Chứng minh:
a) EB/EC=(AB/AC)^3
b) BC.BE.BF=AH^3
Cho tam giác ABC có AC = 16cm, AB = 12cm, BC = 20cm. Đường cao AH.
a,Chứng minh tam giác ABC vuông.
b,Tính đường cao AH.
c,Từ H vẽ HE vuông góc với AB và HF vuông góc với AC. Tính HE, HF
d,So sánh: tanB và sinB (mình cần nhất câu này thôi 3 câu trên có hay không không quan trọng cảm ơn ae)
Cho tam giác ABC vuông tại A, có đường cao AH. Vẽ HE vuông góc AB tại E ; vẽ HF vuông góc AC tại F. Chứng minh: (AE.AB)/(EF.BC) = AF/AB
cho tam giác ABC vuông tại A đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên AB, AC. C/m
a) \(\dfrac{EB}{FC}\)=\(\left(\dfrac{AB}{AC}\right)^3\)
b) BC.BE.CF = AH3
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. Chứng minh:
a) \(BC^2=3AH^2+BE^2+CF^2\)
b) \(\dfrac{AB^3}{AC^3}=\dfrac{BE}{CF}\)