Cho tam giác ABC vuông tại A có BE là trung tuyến. Trên tia đối của tia EB lấy K sao cho EB=EK
a, Chứng minh tam giác ABE= tam giác CKE
b, Vẽ AM vuông góc BE tại M, CN vuông góc EK tại N. Chứng minh AM=CN
c,Chứng minh AB+BC :2>BE
d, Vẽ đường cao EH của tam giác BCE. Chứng minh các đường thẳng BA,HE,CN cùng đi qua một điểm
a) Xét ΔABE và ΔCKE có
EB=EK(gt)
\(\widehat{AEB}=\widehat{CEK}\)(hai góc đối đỉnh)
EA=EC(E là trung điểm của AC)
Do đó: ΔABE=ΔCKE(c-g-c)
b) Xét ΔAME vuông tại M và ΔCNE vuông tại N có
EA=EC(E là trung điểm của AC)
\(\widehat{AEM}=\widehat{CEN}\)(hai góc đối đỉnh)
Do đó: ΔAME=ΔCNE(Cạnh huyền-góc nhọn)
Suy ra: AM=CN(hai cạnh tương ứng)