Cho tam giác ABC vuông tại A có BD là tia phân giác của góc B ( D thuộc AC).Chứng minh rằng :\(\dfrac{B}{2}\) =\(\dfrac{AC}{BC+AB}\)
Cho tam giác ABC cân tại A. BD,CE là đường cao. AB=c, BC=a, AC=b. Chứng minh rằng: \(DE=\dfrac{a\left(2b^2-a^2\right)}{2b^2}\)
Cho tam giác ABC cân tại A có góc A nhọn .Vẽ BM //AC .Chứng minh hệ thức \(\dfrac{AM}{MC}=2\left(\dfrac{AB}{BC}\right)^2-1\)
Cho a,b > 0. Chứng minh \(\dfrac{ab+bc+ac}{a^2+b^2+c^2}+\dfrac{\left(a+b+c\right)^3}{abc}\ge28\)
cho tam giác ABC có BC=a; AC=b;AB=c. CHứng minh:
a) \(IA=\sqrt{\dfrac{bc\left(b+c-a\right)}{\left(a+b+c\right)}}\)
b) \(IA+IB+IC\le\sqrt{ab+bc+ca}\)
đường tròn tâm (I) nội tiếp tam giác ABC , (I) cắt AB tại F cắt Bc tại D và cắt AC tại E . Ad cắt (I) tại M . AI cắt EF tại K . chứng minh \(\dfrac{IA^2}{AB\cdot AC}+\dfrac{IB^2}{BC\cdot BA}+\dfrac{IC^2}{CA\cdot CB}=1\)
cho tam giác ABC vuông tại A đường cao AH. cmr \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
Cho tam giác ABC có BC =a,AC=b,AB=c là độ dài 3 cạnh của tam giac thỏa mãn hệ thức :\(\dfrac{ab}{b+c}+\dfrac{bc}{c+a}+\dfrac{ca}{b+a}=\dfrac{ac}{b+c}+\dfrac{ab}{c+a}+\dfrac{bc}{b+a}\) .Chứng minh rằng tam giac ABC là tam giác cân
cho tam giác ABC vuông tại A cạnh BC = 5cm và tỉ số hai hình chiếu của AB, AC trên cạnh huyền \(\dfrac{9}{16}\) . Tính din tích tam giác ABC