CMR : tan\(\dfrac{B}{2}=\dfrac{AC}{BC+AB}\) nhé mình ghi thiếu
Theo tính chất phân giác:
\(\dfrac{AD}{AB}=\dfrac{CD}{BC}=\dfrac{AD+CD}{AB+BC}=\dfrac{AC}{AB+BC}\)
\(\Rightarrow tan\dfrac{B}{2}=\dfrac{AD}{AB}=\dfrac{AC}{AB+BC}\) (đpcm)
CMR : tan\(\dfrac{B}{2}=\dfrac{AC}{BC+AB}\) nhé mình ghi thiếu
Theo tính chất phân giác:
\(\dfrac{AD}{AB}=\dfrac{CD}{BC}=\dfrac{AD+CD}{AB+BC}=\dfrac{AC}{AB+BC}\)
\(\Rightarrow tan\dfrac{B}{2}=\dfrac{AD}{AB}=\dfrac{AC}{AB+BC}\) (đpcm)
Cho tam giác ABC cân tại A. BD,CE là đường cao. AB=c, BC=a, AC=b. Chứng minh rằng: \(DE=\dfrac{a\left(2b^2-a^2\right)}{2b^2}\)
tam giác abc có ab<ac nội tiếp (o) đường phân giác ad cắt (o) tại i(d thuộc bc)
a chứng minh oi vuông góc với bc và ib=ic
b,bi^2=ai.id
Bài 5 : (3 điểm ) Cho tam giác ABC vuông tại A có AC = 12 cm và BC = 13 cm Đường cao AH b/Kẻ HD vuông góc với AB tại D , kẻ HE vuông góc với AC tại E . Chứng minh : HB.HC=DA.DB+EA.EC
Cho tam giác ABC (có ba góc nhọn) nội tiếp đường tròn (O) và tia phân giác của góc B cắt đường tròn tại M. Các đường cao BD và CK của ∆ABC cắt nhau tại H.
a) Chứng minh rằng tứ giác ADHK nội tiếp một đường tròn.
b) Chứng minh rằng OM là tia phân giác của góc AOC.
c) Gọi I là giao điểm của OM và AC. Tính tỉ số OI BH .
cho tam giác ABC có 3 góc nhọn nội tiếp trong (O;R).Vẽ BD vuông AC tại D vẽ CE vuông AB tại E.BD và CE cắt nhau tại H.Vẽ đường kính AOK a)Chứng minh tứ giác BHCK là hình bình hành b)Chứng minh tứ giác BCDE nội tiếp đường tròn tâm I.Xác định vị trí điểm I c)chứng minh DE vuông AK d)Cho BAK=60.Tính theo R độ dài AH
cho tam giác ABC có AB = 6cm, AC = 4,5 cm, BC = 7,5 cm
a, Chứng minh tam giác ABC vuông
b, Tính góc B, góc C, đường cao AH
cho nửa đường tròn tâm O đường kính AB lấy C trên nửa đường tròn. lấy D thuộc AB. đường thẳng D vuông góc với AB cắt BC tại F,cắt AC tại E, tiếp tuyến C của đường tròn O cắt EF tại I . chứng minh a) so sánh góc IEC và góc ICE và góc ABC ,b)tam giác IEC là tam giác cân,c)IC=IE=IF
Cho tam giác ABC có BC =a,AC=b,AB=c là độ dài 3 cạnh của tam giac thỏa mãn hệ thức :\(\dfrac{ab}{b+c}+\dfrac{bc}{c+a}+\dfrac{ca}{b+a}=\dfrac{ac}{b+c}+\dfrac{ab}{c+a}+\dfrac{bc}{b+a}\) .Chứng minh rằng tam giac ABC là tam giác cân
Cho tam giác ABC có: góc B = 90 độ + góc C , nội tiếp đường tròn O. Qua B kẻ đường thẳng vuông góc với BC cắt đường tròn O tại I, tiếp tuyến của đường tròn O kẻ từ A cắt BC tại H. Chứng minh :
a) AH vuông góc BC
b) AB^2 + AC^2 = 4R^2