Cho tam giác ABC trọng tâm G, gọi I là trung điểm AG. Biểu diễn \(\overrightarrow{CI}=m\overrightarrow{CA}+n\overrightarrow{CB}\), giá trị m = ...
Cho tam giác ABC có trọng tâm G. D,E,F lần lượt là trung điểm của BC,CA,AB. Gọi I là giao của AD,EF.
Đặt \(\overrightarrow{u}=\overrightarrow{AE},\overrightarrow{v}=\overrightarrow{AF}\)
Hãy biểu diễn \(\overrightarrow{AI},\overrightarrow{AG},\overrightarrow{DE},\overrightarrow{DC}\) theo \(\overrightarrow{u},\overrightarrow{v}\)
Cho tam giác ABC trọng tâm G, đặt \(\overrightarrow{GA}=\overrightarrow{a};\overrightarrow{GB}=\overrightarrow{b}\), biểu diễn \(\overrightarrow{GC}=m\overrightarrow{a}+m\overrightarrow{b}\). Tổng m + n =...
Cho tam giác ABC có trọng tâm G. D,E,F lần lượt là trung điểm của BC,CA,AB. Gọi I là giao của AD,EF.
Đặt \(\overrightarrow{u}=AD\); \(\overrightarrow{v}=AF\)
Hãy biểu diễn \(\overrightarrow{AI},\overrightarrow{AG},\overrightarrow{DE},\overrightarrow{DC}\) theo \(\overrightarrow{u};\overrightarrow{v}\)
1.Cho △ABC. Gọi M;N lần lượt là trung điểm AB và BC. Đặt\(\overrightarrow{CM}=\overrightarrow{a};\overrightarrow{AN}=\overrightarrow{b}\).Biểu diễn các véc tơ \(\overrightarrow{AB};\overrightarrow{BC};\overrightarrow{CA}\) theo \(\overrightarrow{a};\overrightarrow{b}\)
2.Cho △ABC.Trên đường thẳng AB lấy điểm M sao cho \(\overrightarrow{MA}=2\overrightarrow{MB}\).Hãy phân tích véc tơ \(\overrightarrow{CM}\)theo hai véc tơ \(\overrightarrow{u}=\overrightarrow{CA};\overrightarrow{v}=\overrightarrow{CB}\)
3. Cho △ABC. Gọi M;N;P lần lượt trên cách cạnh AB;BC;CA của △ABC sao cho MB =2MA;NC=2NB;PA=2PC.CMR : \(\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\overrightarrow{0}\)
Cho tam giác ABC . I là điểm trên BC sao cho \(2\overrightarrow{CI}=3\overrightarrow{BI}\). F là điểm trên BC sao cho \(5\overrightarrow{FB}=2\overrightarrow{FC}.\)
a, Tính \(\overrightarrow{AI},\overrightarrow{AF}\) theo\(\overrightarrow{AB},\overrightarrow{AC}\)
b, G là trọng tâm tam giác ABC. Tính \(\overrightarrow{AG}\) theo\(\overrightarrow{AI},\overrightarrow{AF}\)
ABCD là hình bình hành, I là trung điểm của CD, G là trọng tâm tam giác BCI, \(\overrightarrow{a}=\overrightarrow{AB};\overrightarrow{b}=\overrightarrow{AD}\). Đẳng thức đúng:
A. \(\overrightarrow{AG}=\frac{5}{6}\overrightarrow{a}+\frac{2}{3}\overrightarrow{b}\)
B. \(\overrightarrow{AG}=\frac{4}{3}\overrightarrow{a}+\frac{2}{3}\overrightarrow{b}\)
C. \(\overrightarrow{AG}=\frac{5}{6}\overrightarrow{a}+\overrightarrow{b}\)
D. \(\overrightarrow{AG}=\overrightarrow{a}+\frac{5}{6}\overrightarrow{b}\)
Cho \(\Delta\)ABC có G là trọng tâm. Gọi D, E thỏa \(2\overrightarrow{CD}=3\overrightarrow{DB}\), \(5\overrightarrow{EB}=2\overrightarrow{EC}\).
a/ Tính \(\overrightarrow{AD},\overrightarrow{AE}\) theo\(\overrightarrow{AB},\overrightarrow{AC}\)
b/ Tính \(\overrightarrow{AG}\) theo \(\overrightarrow{AD},\overrightarrow{AE}\)
Cho tam giác ABC có trọng tâm G, đặt \(\overrightarrow{a}=\overrightarrow{GA},\overrightarrow{b}=\overrightarrow{GB}\). Khi đó \(\frac{1}{2}\overrightarrow{AB}-\overrightarrow{BC}=...\)