Lời giải:
Kéo dài $AG$ cắt $BC$ tại $M$ thì $M$ là trung điểm $BC$
Ta có:
$\overrightarrow{CI}=\overrightarrow{CA}+\overrightarrow{AI}=\overrightarrow{CA}+\frac{1}{2}.\overrightarrow{AG}=\overrightarrow{CA}+\frac{1}{2}.\frac{2}{3}.\overrightarrow{AM}$
$=\overrightarrow{CA}+\frac{1}{3}\overrightarrow{AM}$
$=\overrightarrow{CA}+\frac{1}{3}(\overrightarrow{AC}+\overrightarrow{CM})$
$=\overrightarrow{CA}+\frac{1}{3}(-\overrightarrow{CA}+\frac{1}{2}\overrightarrow{CB})$
$=\frac{2}{3}\overrightarrow{CA}+\frac{1}{6}\overrightarrow{CB}$
Vậy $m=\frac{2}{3}$