Cho tam giác ABC nhọn (AB<AC), có các đường cao BN và CM cắt nhau tại H. Gọi O là trung điểm của BC. Chứng minh rằng :
a) Bốn điểm B,M,N,C thuộc cùng một đường tròn .
b)MN//BC
c)ON là tiếp tuyến của đường tròn có đường kính AH
Cho tam giác ABC nhọn ( AB < AC ) nội tiếp đường tròn tâm O, đường cao AH. Gội M và N lần lượi là các hình chiếu của điểm H trên cạnh AB và AC
a) CM: tứ giác AMHN nội tiếp đường tròn
b) CM: tam giác AMN đông dạng với tam giác ACB
c) Đường thẳng NM cắt đường thẳng BC tại Q. CM: \(QH^2\)=QB.QC
d) Gọi AQ cắt đường tròn (O) tại điểm RA khác điểm A và điểm I là tâm đường tròn ngoại tiếp tam giác MNB. CMR: ba điểm R, H, I thẳng hàng
Cho tam giác ABC có 3 góc nhọn, AB < AC và 3 đường cao AD,BE,CF cùng đi qua điểm H. Gọi (S) là đường tròn ngoại tiếp tam giác DEF
1, CM đường tròn (S) đi qua trung điểm của đoạn thẳng AH
2, Gọi M,N lần lượt là giao điểm của đường tròn (S) với các đoạn BH, CH. Tiếp tuyến tại D của đường tròn (S) cắt đường thẳng MN tại T. CM đường thẳng HT song song với EF
Cho tam giác AB cân tại A nội tiếp đường tròn tâm O. Gọi M;N là hai điểm lần lượt thuộc các đường thẳng AB và AC sao cho MN=AB=AC. Gọi P là giao điểm của MN và (O), Q là 1 điểm thuộc AP sao cho QM+QN=AP. Chứng minh rằng 4 điểm A;M;Q;N cùng thuộc một đường tròn.
Cho tam giác nhọn ABC, đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM.
a. Chứng minh AH ⊥ BC
b. Gọi E là trung điểm của AH. Chứng minh ME là tiếp tuyến của đường tròn (O).
c. Chứng minh MN.OE = 2ME.MO
d. Giả sử AH = BC. Tính tan(BAC)
Cho tam giác ABC vuông tại A (AB<AC) đường cao AH . Đường tròn tâm I đường kính AH cắt các đoạn AB,AC lần lượt tại M,N . Gọi O là trung điểm của BC , D là giao điểm của MN và OA
1. Cmr
a. AM.AB=AN.AC
b. Tg BMNC nội tiếp
2. Cmr
a. tam giác ADI đồng dạng tg AHO
b. 1/AD=1/HB+1/HC
3. Gọi P là giao điểm của BC và MN , K là giao điểm thứ hai của AP và đường tròn đường kính AH . Cmr góc BKC=90
Cho ∆ABC nhọn (AB < AC). Đường tròn tâm O đường kính BC cắt AB, AC tại M và N. Gọi H là giao điểm của BN và CM.
a) Chứng minh AH ^ BC tại D.
b) Gọi S là trung điểm AH. Chứng minh SN là tiếp tuyến của đường tròn (O).
c) Chứng minh OM là tiếp tuyến của đường tròn ngoại tiếp ∆AMN.
cho tam giác nhọn ABC nội tiếp đường tròn tâm O. đường tròn đường kính BC cắt AB, AC lần lượt tại F,E. H là giao điểm của BE , CF.
a.cm AEHF nội tiếp
b, cm AB.AF=AC.AE
c. gọi D là giao điểm của AH và BC. P,Q lần lượt là hình chiếu của D lên BR, CF. cm OA vuông góc với PQ
tam giác ABC nhọn nội tiếp đường tròn (O;R), N bất kì thuộc BC(N≠B,C). AN cắt (O) tại M; E,H là hình chiếu của M trên AB,AC. MD vuông góc BC(Dϵ BC)
1 CMR : H,D,E thẳng hàng
2 tìm vị trí của N trên BC để EH Max