Đặt BC = a; CA = b; AB = c.
Theo định lý hàm sin và định lý hàm cos, ta sẽ có:
\(\frac{sinB}{sinA}=\frac{b}{a};\frac{sinC}{sinA}=\frac{c}{a};\)
\(cosB=\frac{c^2+a^2-b^2}{2ca};cosC=\frac{a^2+b^2-c^2}{2ab}\).
Do đó:
\(sinA=\frac{sinB+sinC}{cosB+cosC}\)
\(\Leftrightarrow\frac{sinB}{sinA}+\frac{sinC}{sinA}=cosB+cosC\)
\(\Leftrightarrow\frac{b}{a}+\frac{c}{a}=\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}\)
\(\Leftrightarrow b+c=\frac{c^2b+a^2b-b^3+a^2c+b^2c-c^3}{2bc}\)
\(\Leftrightarrow a^2b+a^2c-b^3-c^3=b^2c+bc^2\)
\(\Leftrightarrow\left(b+c\right)\left(b^2+c^2\right)=a^2\left(b+c\right)\Leftrightarrow a^2=b^2+c^2\).
Theo định lý Pythagoras đảo, tam giác ABC vuông tại A.