Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy điểm D sao cho AD=AB. Trên nửa mặt phẳng không chứa B có bờ AC, vẽ tia Ay vuông góc với AC, trên tia đó lấy điểm E sao cho AE=AC. Chứng minh rằng:
a) AM=DE/2
b)AM vuông góc DE
Cho tam giác nhọn ABC ; có đường cao AH. Trên nửa mặt phẳng bờ AC chứa điểm B vẽ tia AE vuông góc với AC và AE = AC . Trên nửa mặt phẳng bờ AB chứa điểm C vẽ tia AF vuông góc với AB và AF = AB.
a. CM: EB = FC
b.Gọi giao điểm của EF với AH là N. CM N là trung điểm của EF
Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ AB ko chứa C vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mặt phẳng bờ AC ko chứa B ta vẽ đoạn thẳng AE vuông góc AC VÀ AE=AC. Trên tia AM ta lấy điểm F sao cho M là trung điểm của AF
a) CM: Tam giác MAC= tam giác MFB => AC = BF
b) CM: Tam giác ADE = tam giác BAF
c) CM:AM vuông góc DE
d) Từ A vẽ đường thẳng vuông góc với BC cắt BC tại H cắt DE tại K. CM: K là trung điểm của DE
cho tam giác ABC có 3 góc nhọn , AB<AC,trung tuyến AM , trên nửa mặt phẳng bờ AB chứa C vẽ đoạn thẳng AE vuông góc với AB và AE = AB . Trên nửa mặt phẳng bờ AC chứa điểm B vẽ đoạn thẳng AD vuông góc với AC và AD=AC . Gọi P và Q lần lượt là giao điểm của DE với AB và AC . Chứng minh AP<AQ
Cho ΔABC. M là trung điểm BC. Trên nửa mặt phẳng không chứa điểm C bờ AB vẽ Ax ⊥ AB. Trên tia đó lấy D sao cho AD = AB. Trên nửa mặt phẳng bờ không chứa B bờ AC vẽ tia Ay ⊥ AC. Trên đó lấy E sao cho AE = AC. Chứng minh :
a) AM = \(\frac{DE}{2}\)
b) AM ⊥ DE
cho tam giác ABC có 3 góc nhọn , AB<AC,trung tuyến AM , trên nửa mặt phẳng bờ AB chứa C vẽ đoạn thẳng AE vuông góc với AB và AE = AB . Trên nửa mặt phẳng bờ AC chứa điểm B vẽ đoạn thẳng AD vuông góc với AC và AD=AC .Trên tia đối của tia MA lấy N sao cho MN=MA . Gọi P và Q lần lượt là giao điểm của DE với AC và AB . Chứng minh AP<AQ
cho tam giác ABC có 3 góc nhọn và trung tuyến AM. Trên nửa mặt phẳng chứa điểm C bờ là đường thẳng AB vẽ đoạn thẳng AE vuông góc với AB và AB = AE. Trên nửa mặt phẳng chứa điểm B bờ là đường thẳng AC vẽ đoạn thẳng AD vuông góc với AC và AC = AD.
a) Trên tia đối của tia AM lấy điểm N sao cho MN = MA. Chứng minh rằng DE = AN
b) Gọi I là giao điểm của DE và AM. chứng minh rằng \(\frac{AD^2+IE^2}{DI^2+AE^2}=1\)
Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng không chứa B có bờ AC, vẽ tia Ay vuông góc với AC, trên tia đó lấy điểm E sao cho AE = AC. Chứng minh rằng:
a) \(AM=\dfrac{DE}{2}\)
b) \(AM\perp BC\)