a, Xét tam giác ABC có:
BAC + (ABC + ACB)=1800
Xét tam giác MBC có:
BMC + (MCB + MBC)=1800
\(\Rightarrow\)BAC + (ABC + ACB) = BMC + (MCB + MBC) (1)
Vì M nằm trong tam giác ABC nên BM nằm giữa 2 tia BC và BA.
\(\Rightarrow\) ABC > MBC
Tương tự ta được: ACB > MCB.
\(\Rightarrow\)ABC + ACB > MBC + MCB (2)
Từ (1) và (2) suy ra: BAC < BMC.
b, Kéo dài AM, cắt BC tại E.
Xét tam giác ABM có BME là góc ngoài tại đỉnh M nên ta có:
BME = MAB + MBA. (1)
Tương tự đối với tam giác AMC có CME là góc ngoài tại đỉnh M nên ta cũng có:
CME = MAC + MCA. (2)
Từ (1) và (2) suy ra:
BME+CME = MAB + MBA + MAC + MCA.
\(\Rightarrow\)BMC = BAC + ABM + ACM
Sorry bn, mk ko gõ đc dấu mũ nha