a) Xét t/g AMC và t/g AMB có:
AC = AB (gt)
AM là cạnh chung
MC = MB (gt)
Do đó, t/g AMC = t/g AMB (c.c.c)
=> CAM = BAM (2 góc tương ứng)
=> AM là phân giác BAC ( đpcm)
b) Xét t/g ANC và t/g ANB có:
AC = AB (gt)
AN là cạnh chung
NC = NB (gt)
Do đó t/g ANC = t/g ANB (c.c.c)
=> CAN = BAN (2 góc tương ứng)
=> AN là phân giác BAC
Như vậy, AM và AN đều là phân giác của BAC
Nên AM và AN trùng nhau hay A,M,N thẳng hàng (đpcm)
c) t/g ANC = t/g ANB (câu b)
=> ANC = ANB (2 góc tương ứng)
Mà ANC + ANB = 180o ( kề bù)
Nên ANC = ANB = 90o
=> AN _|_ BC hay MN _|_ BC
Mà CN = BN (gt)
Do đó, MN là đường trung trực của BC ( đpcm)