Lời giải:
Áp dụng định lý Cos ta có:
$AB^2=AD^2+BD^2-2AD.BD\cos \widehat{ADB}$
$\Rightarrow AB^2.CD=AD^2.CD+BD^2.CD-2AD.BD.CD\cos \widehat{ADB}(1)$
$AC^2=AD^2+CD^2-2AD.CD\cos \widehat{ADC}$
$=AD^2+CD^2-2AD.CD\cos (180-ABD)$
$=AD^2+CD^2+2AD.CD\cos \widehat{ABD}$
$\Rightarrow AC^2.DB=AD^2.DB+CD^2.DB+2AD.CD.DB\cos \widehat{ABD}(2)$
Lấy $(1)+(2)$ ta có:
$AB^2.CD+AC^2.DB=AD^2.BC+BD.CD.BC$
$\Leftrightarrow AB^2.CD+AC^2.DB-AD^2.BC=BD.CD.BC$ (đpcm)
