Xét ΔBDA có \(cosB=\dfrac{BD^2+BA^2-AD^2}{2\cdot BD\cdot BA}\)
=>\(20^2+60^2-AD^2=2\cdot20\cdot60\cdot cos60=40\cdot60\cdot\dfrac{1}{2}=20\cdot60=1200\)
=>\(AD=\sqrt{20^2+60^2-1200}=20\sqrt{7}\left(cm\right)\)
Xét ΔBAD có \(\dfrac{BD}{sinBAD}=\dfrac{AD}{sinB}\)
=>\(\dfrac{20}{sinBAD}=\dfrac{20\sqrt{7}}{sin60}=\dfrac{40\sqrt{21}}{3}\)
=>\(\dfrac{1}{sinBAD}=\dfrac{2\sqrt{21}}{3}\)
=>\(sinBAD=\dfrac{3}{2\sqrt{21}}\)
=>góc BAD=19 độ
góc AED=180-2*19=142 độ
Xét ΔAED có AD/sinAED=DE/sinEAD
=>\(\dfrac{DE}{\dfrac{3}{2\sqrt{21}}}=\dfrac{20\sqrt{7}}{sin142}\)
=>\(DE\simeq28,13\left(cm\right)\)