a: Xét ΔABI vuông tại I và ΔACI vuông tại I có
AI chung
IB=IC
Do đó: ΔABI=ΔACI
b,c: Ta có: ΔABI=ΔACI
=>AB=AC và góc BAI=góc CAI
=>AI là phân giác của góc BAC
a: Xét ΔABI vuông tại I và ΔACI vuông tại I có
AI chung
IB=IC
Do đó: ΔABI=ΔACI
b,c: Ta có: ΔABI=ΔACI
=>AB=AC và góc BAI=góc CAI
=>AI là phân giác của góc BAC
Cho tam giác ABC cân tại A. Lấy I là trung điểm BC. Trên tia đối của CB lấy điểm N, trên tia đối của BC lấy điểm M sao cho CN=BM.
a) Chứng minh: AI là tia phân giác góc BAC;
b) Chứng minh AM=AN;
c) Qua B vẽ đường thẳng vuông góc với AB cắt tia AI tại K. Chứng minh KC vuông góc AC.
cho tam giác ABC gọi I là trung điểm của BC, biết rằng AI vuông góc với BC
a). Chứng minh: tam giác ABI = tam giác ACI
b). Chứng minh: tam giác ABC cân tại A
c). Trên tia đối của tia IA lấy điểm D sao cho ID = IA. Chứng minh: AB // CD
Cho tam giác ABC cân ở A. Kẻ BD vuông góc AC, CE vuông góc với AB (D thuộc AC, e thuộc AB ). Gọi I là giao điểm của BD và CE. Chứng minh :
a) BE=CD
b) AI là tia phân giác của góc BAC
Cho tam giác ABC có AB=AC, AM là phân giác của góc BAC ( M thuộc BC ):
a, Chứng minh tam giác ABM= tam giác ACM
b, Chứng minh M là trung điểm của BC và AM vuông góc BC
c, Kẻ ME vuông góc AB ( E thuộc AB ) và MF vuông góc AC ( F thuộc AC ). Chứng minh ME=MF
Cho tam giác ABC có AB=AC, AM là phân giác của góc BAC ( M thuộc BC ):
a, Chứng minh tam giác ABM= tam giác ACM
b, Chứng minh M là trung điểm của BC và AM vuông góc BC
c, Kẻ MF vuông góc AB ( F thuộc AB ) và ME vuông góc AC ( E thuộc AC ). Chứng minh EF // BC
Cho tam giác ABC cân tại A, gọi M, N lần lượt là trung điểm của AB, AC. Các đường trung trực của AB, AC cắt nhau tại O. a) Chứng minh AD là phân giác của góc BAC. b) Chứng minh tam giác OBC cân c) Chứng minh MN // BC. d) Chứng minh AO vuông góc với MN.
Câu 6:(3 điểm) Cho tam giác ABC vuông tại A, có BI là tia phân giác của góc ABC trên cạnh BC lấy điểm D sao cho BA = BD a) Chứng minh tam giác IAB= tam giác IDB b) Chứng minh Dị BC ©) So cảnh AI với IC d) Đường thẳng D1 cắt đường thẳng BA tại F, gọi H là trung điểm của đoạn thẳng
: Cho tam giác ABC nhọn. Trên tia đối của tia AB lấy điểm D sao AD = AC, trên tia đối của tia AC lấy điểm E sao cho AE = AB.
a. So sánh BC và DE.
b. Tam giác ACD và tam giác ABE là tam giác gì?
c. Gọi M là trung điểm của BE. Chứng minh AM vuông góc với BE
Cho tam giác ABC có AB=AC. Gọi D là trung điểm cạnh BC, qua A vẽ đường thẳng d song song với BC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD
b, AD là tia phân giác của góc BAC
c, AD vuông góc với đường thằng d