a: Xét ΔABI vuông tại I và ΔACI vuông tại I có
AI chung
BI=CI
Do đó: ΔABI=ΔACI
b: Ta có: ΔABI=ΔACI
nên AB=AC
hay ΔABC cân tại A
c: Xét tứ giác ABDC có
I là trung điểm của BC
I là trung điểm của AD
Do đó:ABDC là hình bình hành
Suy ra: AB//CD
a: Xét ΔABI vuông tại I và ΔACI vuông tại I có
AI chung
BI=CI
Do đó: ΔABI=ΔACI
b: Ta có: ΔABI=ΔACI
nên AB=AC
hay ΔABC cân tại A
c: Xét tứ giác ABDC có
I là trung điểm của BC
I là trung điểm của AD
Do đó:ABDC là hình bình hành
Suy ra: AB//CD
Cho tam giác ABC cân tại góc A gọi M là trung điểm của AC . Trên tia đối của tia MB lấy điểm D sao cho DM = BM a)tam giác BMC=tam giác DMA b) chứng minh tam giác ACD cân c) trên tia đối của tia CA lấy điểm E sao cho CA=CE . Chứng minh DC đi qua trung điểm K của BE
Cho tam giác ABC cân tại A. Lấy I là trung điểm BC. Trên tia đối của CB lấy điểm N, trên tia đối của BC lấy điểm M sao cho CN=BM.
a) Chứng minh: AI là tia phân giác góc BAC;
b) Chứng minh AM=AN;
c) Qua B vẽ đường thẳng vuông góc với AB cắt tia AI tại K. Chứng minh KC vuông góc AC.
cho tam giác ABC với AB nhỏ hơn AC , M là trung điểm của BC trên tia đối của tia MA lấy điểm E sao cho AM=EM . a, chứng minh tam giác AMB= tam giác EMC .b, từ A kẻ AH vuông góc với BC trên tia đối của tia HA lấy điểm D sao cho HA=HD chứng minh CE=BD .c, tam giác AMD là tam giác gì ? Vì sao ?
: Cho tam giác ABC nhọn. Trên tia đối của tia AB lấy điểm D sao AD = AC, trên tia đối của tia AC lấy điểm E sao cho AE = AB.
a. So sánh BC và DE.
b. Tam giác ACD và tam giác ABE là tam giác gì?
c. Gọi M là trung điểm của BE. Chứng minh AM vuông góc với BE
Cho tam giác ABC nhọn (AB< AC). Gọi M là trung điểm của BC. Trên tia AM lấy điểm N sao cho M là trung điểm của AN. a. Chứng minh tam giác AMB = tam giác NMC b. Vẽ AH vuông góc BC(H thuộc BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA. Chứng minh: tam giác ABI cân và BI = CN
Cho tam giác ABC cân tai A. Gọi Ià trung điểm cạnh BC kẻ ID vuông góc AB tại D kẻ IE vuông góc AC tai E
A Chứng minh Tam giác ABI = Tam giác ACI
B Chứng minh Tam giác IDE cân
C Chứng minh DE song song với BC
cho tam giác DEF cân tại D,gọi M là trung điểm EF
a) chứng minh tam giác DEM = tam giác DFM , từ đó chứng minh DM vuông góc EF
b)trên tia đối tia ED lấy điểm K,tia đối của tia FD lấy điểm H sao cho EK=FH.chứng minh tam giác DHK là tam giác cân
c) chứng minh EF // HK
d) gọi I là trung điểm HK .chứng minh D,M,I thẳng hàng
e) chứng minh tam giác HFI = tam giác KEI , từ đó chứng minh tam giác IEF là tam giác cân
f) gọi M là trung điểm EK trên tia đối tia MI lấy điểm N sao cho MI=MN ,chứng minh E,F,N thẳng hàng