a: Xét ΔAMB và ΔEMC co
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔAMB=ΔEMC
b: Xet ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
nên ΔBAD cân tại B
=>BD=BA=CE
c: Xét ΔAMD có
MH vừa là đường cao, vừa là trung tuyến
nên ΔAMD cân tại M
a: Xét ΔAMB và ΔEMC co
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔAMB=ΔEMC
b: Xet ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
nên ΔBAD cân tại B
=>BD=BA=CE
c: Xét ΔAMD có
MH vừa là đường cao, vừa là trung tuyến
nên ΔAMD cân tại M
Cho tam giác ABC nhọn (AB< AC). Gọi M là trung điểm của BC. Trên tia AM lấy điểm N sao cho M là trung điểm của AN. a. Chứng minh tam giác AMB = tam giác NMC b. Vẽ AH vuông góc BC(H thuộc BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA. Chứng minh: tam giác ABI cân và BI = CN
: Cho tam giác ABC nhọn. Trên tia đối của tia AB lấy điểm D sao AD = AC, trên tia đối của tia AC lấy điểm E sao cho AE = AB.
a. So sánh BC và DE.
b. Tam giác ACD và tam giác ABE là tam giác gì?
c. Gọi M là trung điểm của BE. Chứng minh AM vuông góc với BE
Tam giác ABC có AB=AC và M là trung điểm của BC Trên tia đối của tia MA Lấy điểm k sao cho MK=MA a) vẽ hình,ghi giải thiết, kết luận b) chứng minh tam giác ABM=tam giác ACM c) tam giác ABM=tam giác KCM d) AB // CK Kẻ MH vuông góc AB,MK vuông góc AC Chứng minh MHK cân . Sos mọi người cíu tuii bài này với ạ🙏😿
Cho tam giác ABC cân tại góc A gọi M là trung điểm của AC . Trên tia đối của tia MB lấy điểm D sao cho DM = BM a)tam giác BMC=tam giác DMA b) chứng minh tam giác ACD cân c) trên tia đối của tia CA lấy điểm E sao cho CA=CE . Chứng minh DC đi qua trung điểm K của BE
Câu 4 (3,0 điểm). Cho tam giác ABC cân tại A. Gọi H là trung điểm của BC.
a) Chứng minh: tam giác AHB = tam giác AHC.
b) Cho biết cạnh AB = 10 cm; BC = 8 cm. Tính độ dài đoạn thẳng AH.
c) Trên tia đối của tia HA lấy điểm D sao cho HA = HD. Trên tia đối của tia CD lấy điểm M sao cho CD = CM. Chứng minh: AM vuông góc AD.