a: Xét ΔAMB và ΔNMC có
MA=MN
góc AMB=góc NMC
MB=MC
Do đó: ΔAMB=ΔNMC
b: Xét ΔBAI có
BH vừa là đường cao, vừa là trung tuyến
nên ΔBAI cân tại B
=>BA=BI=CN
a: Xét ΔAMB và ΔNMC có
MA=MN
góc AMB=góc NMC
MB=MC
Do đó: ΔAMB=ΔNMC
b: Xét ΔBAI có
BH vừa là đường cao, vừa là trung tuyến
nên ΔBAI cân tại B
=>BA=BI=CN
cho tam giác ABC với AB nhỏ hơn AC , M là trung điểm của BC trên tia đối của tia MA lấy điểm E sao cho AM=EM . a, chứng minh tam giác AMB= tam giác EMC .b, từ A kẻ AH vuông góc với BC trên tia đối của tia HA lấy điểm D sao cho HA=HD chứng minh CE=BD .c, tam giác AMD là tam giác gì ? Vì sao ?
Cho tam giác ABC cân tại A. Lấy I là trung điểm BC. Trên tia đối của CB lấy điểm N, trên tia đối của BC lấy điểm M sao cho CN=BM.
a) Chứng minh: AI là tia phân giác góc BAC;
b) Chứng minh AM=AN;
c) Qua B vẽ đường thẳng vuông góc với AB cắt tia AI tại K. Chứng minh KC vuông góc AC.
: Cho tam giác ABC nhọn. Trên tia đối của tia AB lấy điểm D sao AD = AC, trên tia đối của tia AC lấy điểm E sao cho AE = AB.
a. So sánh BC và DE.
b. Tam giác ACD và tam giác ABE là tam giác gì?
c. Gọi M là trung điểm của BE. Chứng minh AM vuông góc với BE
cho tam giác ABC gọi I là trung điểm của BC, biết rằng AI vuông góc với BC
a). Chứng minh: tam giác ABI = tam giác ACI
b). Chứng minh: tam giác ABC cân tại A
c). Trên tia đối của tia IA lấy điểm D sao cho ID = IA. Chứng minh: AB // CD
Câu 4 (3,0 điểm). Cho tam giác ABC cân tại A. Gọi H là trung điểm của BC.
a) Chứng minh: tam giác AHB = tam giác AHC.
b) Cho biết cạnh AB = 10 cm; BC = 8 cm. Tính độ dài đoạn thẳng AH.
c) Trên tia đối của tia HA lấy điểm D sao cho HA = HD. Trên tia đối của tia CD lấy điểm M sao cho CD = CM. Chứng minh: AM vuông góc AD.