a: Xét ΔIAB và ΔIDB có
BA=BD
\(\widehat{ABI}=\widehat{DBI}\)
BI chung
Do đó: ΔIAB=ΔIDB
b: Ta có: ΔIAB=ΔIDB
nên \(\widehat{BAI}=\widehat{BDI}=90^0\)
hay DI⊥BC
c: Ta có: ΔIAB=ΔIDB
nên IA=ID
mà ID<IC
nên IA<IC
a: Xét ΔIAB và ΔIDB có
BA=BD
\(\widehat{ABI}=\widehat{DBI}\)
BI chung
Do đó: ΔIAB=ΔIDB
b: Ta có: ΔIAB=ΔIDB
nên \(\widehat{BAI}=\widehat{BDI}=90^0\)
hay DI⊥BC
c: Ta có: ΔIAB=ΔIDB
nên IA=ID
mà ID<IC
nên IA<IC
Cho tam giác ABC cân tại A. Lấy I là trung điểm BC. Trên tia đối của CB lấy điểm N, trên tia đối của BC lấy điểm M sao cho CN=BM.
a) Chứng minh: AI là tia phân giác góc BAC;
b) Chứng minh AM=AN;
c) Qua B vẽ đường thẳng vuông góc với AB cắt tia AI tại K. Chứng minh KC vuông góc AC.
Bài 11. Cho tam giác ABC vuông tại A, có B̂ = 60o. Trên cạnh BC lấy điểm D sao cho BA=BD.
Tia phân giác của góc B cắt AC tại I.
a) Chứng minh: Tam giác BAD đều.
b) Chứng minh: Tam giác IBC cân.
c) Chứng minh: D là trung điểm của BC.
Cho tam giác ABC có ba góc nhọn, AB < AC. Qua trung điểm D của cạnh BC kẻ đường thẳng vuông góc với tia phân giác của góc BAC cắt các đường thẳng AB và AC lần lượt tại H và K.
a) Chứng minh rằng: Tam giác HAK cân
b) Chứng minh rằng: BH = CK.
c) Tính độ dài các đoạn thẳng AH và BH, biết AB = 9cm, AC = 12cm.
Cho tam giác ABC vuông tại A. BI là tia phân giác của góc ABC (I thuộc AC). Kẻ ID vuông góc với BC tại D.
a) Chứng minh rằng .
b) Chứng minh cân và BI là đường trung trực của đoạn thẳng AD.
c) Kéo dài DI cắt đường thẳng BA tại E. Chứng minh ID < IE và IE = IC.
d) Tam giác ABC cần có thêm điều kiện gì để điểm I cách đều ba đỉnh của tam giác BEC.
. Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác của góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E.
a) Chứng minh tam giác DAE cân
b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh tam giác BDF cân tại B.
c) Chứng minh BD = CE.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC
Cho tam giác ABC cân tại A, trên cạnh BC lấy điểm D( D khác B, C). Trên tia đối của tia CB, lấy điểm E sao cho CE = BD. Đường vuông góc với BC kẻ từ D cắt BA tại M. Đường vuông góc với BC kẻ từ E cắt AC tại N. MN cắt BC tại I.
a) Chứng minh rằng DM = EN
b) Chứng minh IM = IN; BC < MN.
c) Gọi O là giao điểm của đường phân giác của góc A với MN tại I. Chứng minh rằng .
Bài 4. Cho tam giác nhọn ABC, tia phân giác của góc B cắt cạnh AC tại D. Lấy điểm E trên cạnh BC sao cho AE = BA. Chứng minh rằng:
a) .
b) Tam giác ADE cân.
c) Gọi F là giao điểm của ED và BA. Chứng minh AE // FC.