Cho tam giác ABC. Gọi D, E lần lượt là các \(\overrightarrow{BD}=\frac{1}{3}\overrightarrow{BC};\overrightarrow{AE}=\frac{3}{4}\overrightarrow{AC}\). Tìm vị trí của điểm K trên AD sao cho 3 điểm B, K, E thẳng hàng.
Cho tam giác ABC. Gọi D,E,K lần lượt là các điểm thoản mãn:\(\overrightarrow{BD}\)=2/3 \(\overrightarrow{BC}\), \(\overrightarrow{AE}\)=1/4 \(\overrightarrow{AC}\), \(\overrightarrow{AK}\)=1/3 \(\overrightarrow{AD}\)
Chứng minh B,K,E thẳng hàng
Cho tam giác ABC , gọi M, N lần lượt là trung điểm AB, AC . Trên đường thẳng MN, BC lần lượt lấy điểm E, F sao cho \(\overrightarrow{ME}=-\frac{1}{2}\overrightarrow{NE},\overrightarrow{BF}=\frac{1}{3}\overrightarrow{BC}\) chứng minh 3 đểm A,E,F thẳng hàng
Cho tam giác ABC. Gọi D, M lần lượt là các điểm sao cho: \(\overrightarrow{AD}=2\overrightarrow{AB}-\overrightarrow{CA}\), \(\overrightarrow{BM}=k\overrightarrow{CB}-\overrightarrow{AB}\) với \(k\in R\).
a) Tìm k để đường thẳng DM đi qua trung điểm N của đoạn thẳng BC.
b) Tính \(\frac{ND}{MN}\).
a) Cho tam giác ABC. Gọi D, E lần lượt là các điểm thỏa mãn: \(\overrightarrow{BD}=\dfrac{2}{3}\overrightarrow{BC};\overrightarrow{AE}=\dfrac{1}{4}\overrightarrow{AC}.\)Tìm vị trí của điểm K trên AD sao cho 3 điểm B, K, E thằng hàng.
b) Cho tam giác ABC vuông tại A; BC = a; CA = b; AB = c. Xác định điểm I thỏa mãn hệ thức: \(\left(b^2MB^2+c^2MC^2-2a^2MA^2\right)\) đạt giá trị lớn nhất.
Cho ta giác ABC có M là trung điểm của AB và D,N lần lượt là các điểm trên BC,AC sao cho: \(\overrightarrow{BD}=\sqrt{2}\cdot\overrightarrow{DC}\) , \(\overrightarrow{AN}=\frac{1}{\sqrt{3}}\overrightarrow{AC}\) . Gọi K là điểm thuộc MN thỏa mãn: \(\overrightarrow{MK}=a\cdot\overrightarrow{NK}\) . Tìm a để A,D,K thẳng hàng.
cho tam giác abc với trọng tâm g và i là trung điểm của ac. gọi k thuộc ac sao cho \(\overrightarrow{AK}=x\overrightarrow{AC}\). tìm x để ba điểm b, i, k thẳng hàng
Cho ΔABC có M nằm trên cạnh BC sao cho CM = \(\frac{1}{2}\) BC K là trung điểm AM, đặt \(\overrightarrow{BA}=\overrightarrow{a}\) , \(\overrightarrow{BC}=\overrightarrow{c}\) . Chứng minh: \(\overrightarrow{BK}=\frac{1}{2}\overrightarrow{a}+\frac{1}{3}\overrightarrow{c}\) . Gọi I là điểm trên cạnh AC sao cho \(\overrightarrow{AI}=\frac{2}{5}\overrightarrow{AC}\) . Chứng minh : B, I, K thẳng hàng.
Cho tam giác ABC và M,N lần lượt là trung điểm AB,AC. Gọi E,F thỏa mãn \(\overrightarrow{ME}=\frac{1}{3}\overrightarrow{MN};\overrightarrow{BF}=\frac{1}{3}\overrightarrow{BC}\).
Chứng minh A,E,F thẳng hàng.