a) Ta có: M là trung điểm của AD (gt) (1)
Mà P' là điểm đối xứng của P qua M (gt)
\(\Rightarrow M\)cũng là trung điểm của PP' (2)
Từ (1), (2) \(\Rightarrow APDP'\)là hình bình hành (3)
Từ (3) \(\Rightarrow\) PA = P'D (4)
Từ (3) \(\Rightarrow PA\) // P'D
\(\Rightarrow\) PC // P'D (5)
Mà DB = DC (6)
Từ (5), (6) \(\Rightarrow\) P'D là đường trung bình của \(\Delta BPC\)
\(\Rightarrow\) P'D = \(\dfrac{1}{2}PC\) (7)
Từ (4), (7) \(\Rightarrow\) PA = \(\dfrac{1}{2}PC\) (8)
\(\Leftrightarrow\dfrac{PA}{PC}=\dfrac{1}{2}\)
Từ (8) \(\Rightarrow\) PC = 2PA (9)
Từ (4), (9) \(\Rightarrow\) PA + PC = PA + 2PA
\(\Leftrightarrow AC=3PA\)
\(\Leftrightarrow\dfrac{PA}{AC}=\dfrac{1}{3}\)
Vậy \(\dfrac{PA}{PC}=\dfrac{1}{2}\) và \(\dfrac{PA}{AC}=\dfrac{1}{3}\)