Cho tam giác ABC có 3 góc nhọn . Ba đường cao AD, BE, CF cắt nhau tại H
a) Chứng minh : tam giác AEB ~tam giác AFC. Tính tỉ số đồng dạng với AB=4cm;AC=6cm
b) Chứng minh : tam giác AEF ~tam giác ABC
c) Kéo dài EF và BC cắt nhau tại I. Gọi M là trung điểm của BC. Chứng minh : IE.IF=IM2-\(\dfrac{BC^2}{4}\)
d) Gọi N là trung điểm của AH. Chứng minh: MN vuông góc với EF
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc BAE chung
Do đó: ΔAEB\(\sim\)ΔAFC
Suy ra: \(k=\dfrac{AB}{AC}=\dfrac{4}{6}=\dfrac{2}{3}\)
b: Ta có: ΔAEB\(\sim\)ΔAFC
nên AE/AF=AB/AC
hay AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
Do đó: ΔAEF\(\sim\)ΔABC