Bài 1: Định lý Talet trong tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Phú Thành

cho tam giác ABC vuông tại A đường cao AH

a)Chứng minh tam giác ABC đồng dạng cới tam giác HCA. Từ đó suy ra AC.AH=CH.AB

b)Tia phân giác của góc ACB cắt AH tại D. Biết CH=9cm; AC=15cm.

Tính AD;HD

c)Tia Phân giác của góc HAB cắt Bc tại I. Chứng minh ID //AB

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

\(\widehat{ACB}\) chung

Do đó: ΔABC đồng dạng với ΔHAC

=>\(\dfrac{AC}{HC}=\dfrac{AB}{AH}\)

=>\(\dfrac{AH}{AB}=\dfrac{HC}{AC}\left(1\right)\)

=>\(AH\cdot AC=AB\cdot HC\)

b: Ta có: ΔAHC vuông tại H

=>\(HA^2+HC^2=AC^2\)

=>\(HA^2=15^2-9^2=144\)

=>\(HA=\sqrt{144}=12\left(cm\right)\)

Xét ΔCAH có CD là phân giác

nên \(\dfrac{AD}{AC}=\dfrac{HD}{HC}\)

=>\(\dfrac{AD}{15}=\dfrac{HD}{9}\)

=>\(\dfrac{AD}{5}=\dfrac{HD}{3}\)

mà AD+HD=AH=12cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{5}=\dfrac{HD}{3}=\dfrac{AD+HD}{5+3}=\dfrac{12}{8}=1,5\)

=>\(AD=1,5\cdot5=7,5\left(cm\right);HD=3\cdot1,5=4,5\left(cm\right)\)

c: Xét ΔHAB có AI là phân giác

nên \(\dfrac{HI}{IB}=\dfrac{AH}{AB}\)(2)

Ta có: \(\dfrac{AD}{AC}=\dfrac{HD}{HC}\)

=>\(\dfrac{HD}{HC}=\dfrac{AD}{AC}\)

=>\(\dfrac{HD}{DA}=\dfrac{HC}{AC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{HD}{DA}=\dfrac{HI}{IB}\)

Xét ΔHAB có \(\dfrac{HD}{DA}=\dfrac{HI}{IB}\)

nên DI//AB


Các câu hỏi tương tự
vũ long
Xem chi tiết
TIEN
Xem chi tiết
Moe meo
Xem chi tiết
Phạm Phương
Xem chi tiết
Vinh Trần
Xem chi tiết
nguyễn thị hồng hạnh
Xem chi tiết
Phương Nguyễn
Xem chi tiết
Nguyễn Khánh Nhiên
Xem chi tiết
Ánh Hoàng
Xem chi tiết