a.Ta có CDCD là phân giác góc C
→DA\AB=2\3
→EB\EA=CB\CA=1\2
2−1
.Ta có CDCD là phân giác góc C
→DAAB=23→DAAB=23
→EBEA=CBCA=12→EBEA=CBCA=12
→BEAB=1→BEAB=1
→BE=AB=AC=24
....
a.Ta có CDCD là phân giác góc C
→DA\AB=2\3
→EB\EA=CB\CA=1\2
2−1
.Ta có CDCD là phân giác góc C
→DAAB=23→DAAB=23
→EBEA=CBCA=12→EBEA=CBCA=12
→BEAB=1→BEAB=1
→BE=AB=AC=24
....
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. Gọi tia AB và tia CD cắt nhau tại E. BE DE a ) Chứng minh : BA DC b ) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thăng AD , BC tại I , K. Chứng minh : El = EK ; c ) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD ; d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh PT LAD
Bài 10: Cho ∆ABC cân tại A. Đường vuông góc với BC tại B cắt đường vuông góc với AC tại Có D. Vẽ BE vuông góc với CD tại E. gọi M là giao điểm của AD và BE. Vē EN vuông góc với BD tại N. a) Chứng minh DE/DC = DM/DA b) Chứng minh MN//AB. c) Chứng minh ME = MB
Bài 4:Cho tam giác ABC có AB = 6cm, AC = 8cm , BC = 10cm. Lấy điểm D trên AB sao cho AD = 2cm. Qua D vẽ đường thẳng song song với BC cắt AC tại E. 1) Tính AE. 2) Qua E vẽ đường thẳng song song với AB và cắt BC tại F. Tính BF, DE. 3) Tính và so sánh các tỉ số : AD/AB , AE/AC , DE/BC
cho tam ABC lấy điểm D trên cạnh AB.Qua B kẻ đường thẳng song song với bc cắt AC tại E. a, Biết AD=3cm AB=5cm BC=10cm.Tính de b, Qua C kẻ đường thẳng song song với AB cắt tia DE tại G. CM: DA.EG=DB.DE
Cho tam giác abc có CB<CA và góc CBA>90 độ. Điểm D nằm giữa hai điểm A và C sao cho CBD=BAC
a)cm tam giác ABC đồng dạng với tam giác BDC
b) Tia phân giác của góc ACB cắt BA tại E và BD tại F. chứng minh FD/FB=EB/EA
c) Đường thẳng vuông góc với CE tại C cắt đường thẳng AB tại H. cm HE.EA=HA.EB
Cho tam giác abc có CB<CA và góc CBA>90 độ. Điểm D nằm giữa hai điểm A và C sao cho CBD=BAC
a)cm tam giác ABC đồng dạng với tam giác BDC
b) Tia phân giác của góc ACB cắt BA tại E và BD tại F. chứng minh FD/FB=EB/EA
c) Đường thẳng vuông góc với CE tại C cắt đường thẳng AB tại H. cm HE.EA=HA.EB
cho tam giác ABC vuông tại A đường cao AH
a)Chứng minh tam giác ABC đồng dạng cới tam giác HCA. Từ đó suy ra AC.AH=CH.AB
b)Tia phân giác của góc ACB cắt AH tại D. Biết CH=9cm; AC=15cm.
Tính AD;HD
c)Tia Phân giác của góc HAB cắt Bc tại I. Chứng minh ID //AB
Cho tam giác ABC, đường thẳng song song với BC cắt cạnh AB, AC lần lượt tại D, E. Vẽ đường thẳng a qua A và song song với BC. Đường thẳng a cắt đường thẳng BE và CD lần lượt tại G và K
CM: A là trung điểm của của KL
Cho tam giác ABC, đường thẳng song song BC cắt AB, AC tại D và E. Vẽ đường thẳng a đi qua A và song song với BC. Đường thẳng a cắt BE và CD lần lượt tại G và K. Chứng minh A là trung điểm KG