Cho tam giác ABC nội tiếp (O), H là trực tâm, AH cắt (O) tại E. Kẻ đường kính AOF. Chứng minh:
a) Tứ giác BCEF là hình thang cân
b) \(\widehat{BAE}=\widehat{CAF}\)
c) Gọi I là trung điểm của BC. Chứng minh: H, I, F thẳng hàng
Cho đường tròn (O;5cm), điểm M nằm ngoài đường tròn. Từ M kẻ các tiếp tuyến MA, MB với đường tròn (A; B là các tiếp điểm). Biết \(\widehat{AMB}=60^o\), tia AO cắt đường tròn tại điểm C.
a) Chứng minh: ΔAMB đều
b) Tính chu vi ΔAMB
c) Tứ giác BMOC là hình gì? Vì sao?
cho tam giác ABC vuông tại C có \(\widehat{A}< \widehat{B}\). gọi I, O thứ tự là tâm đường tròn nội tiếp, ngoại tiếp ΔABC. biết ΔBIO vuông . tính tỉ số các cạnh của ΔABC
Cho tam giác abc có ba góc nhọn nội tiếp đường tròn tâm O kẻ đường thẳng (d) tiếp tuyến với đường tròn tâm O(với C là tiếp điểm ) AH, BK là đường cao của tam giác ABC a) Chứng minh tứ giác AKHB nội tiếp b) Chứng minh KHvuông góc với OC2)từ A,H,B,K lần lượt kẻ các đường thẳng song song với OC cắt đường thẳng (d) theo thứ tự là M,N,E,F:a)chứng minh góc CAH = góc CEK b) chưng minh EF=MN
cho tứ giác ABCD nội tiếp đường tròn tâm O. biết phân giác trong của \(\widehat{BAD}\) và \(\widehat{ABC}\) cắt nhau tại E trên cạnh CD.
1. CM: AD+BC=CD
2. cho \(\dfrac{CD}{CB}=k\) (k>1). tính tỉ số diện tích ΔADE và ΔBCE
Cho tam giác ABC nhọn (AB<AC), có các đường cao BN và CM cắt nhau tại H. Gọi O là trung điểm của BC. Chứng minh rằng :
a) Bốn điểm B,M,N,C thuộc cùng một đường tròn .
b)MN//BC
c)ON là tiếp tuyến của đường tròn có đường kính AH
Cho tam giác nhọn ABC, đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM.
a. Chứng minh AH ⊥ BC
b. Gọi E là trung điểm của AH. Chứng minh ME là tiếp tuyến của đường tròn (O).
c. Chứng minh MN.OE = 2ME.MO
d. Giả sử AH = BC. Tính tan(BAC)
Cho tam giác ABC có ba góc nhọn và AB>AC. Tam giác ABC nội tiếp đường tròn (O;R). Đường cao AH của tam giác ABC cắt đường tròn (O;R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M.
a) Chứng minh tứ giác BDHM nội tiếp đường tròn.
b) Chứng minh DA là tia phân giác của \(\widehat{MDC}\)
c) Gọi N là hình chiếu vuông góc của D lên đường thẳng AC, chứng minh ba điểm M, H, N thẳng hàng.
d) Chứng minh \(AB^2+AC^2+CD^2+BD^2=8R^2\)
Cho đường tròn tâm O đường kính AB, lấy điểm C thuộc đường tròn tâm O, với điểm C không trùng A và B. Gọi I là trung điểm của dây AC, D là giao điểm của tia OI và tiếp tuyến của đường tròn tâm O tại A.
a) Chứng minh tam giác ABC vuông.
b) Chứng minh DC là tiếp tuyến của đường tròn tâm O. Chứng minh DC2=DI.DO
c) Tia phân giác của góc BAC cắt dây BC tại điểm E và cắt đường tròn tâm O tại F, với F không trùng với A. Chứng minh rằng FA.FE=FB2