§3. Tích của vectơ với một số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho tam giác ABC. Dựng \(\overrightarrow{AB'}=\overrightarrow{BC};\overrightarrow{CA'}=\overrightarrow{AB};\overrightarrow{BC'}=\overrightarrow{CA}\)

a) Chứng minh rằng A là trung điểm của B'C'

b) Chứng minh các đường thẳng \(AA';BB'\) và \(CC'\) đồng quy

Bùi Thị Vân
15 tháng 5 2017 lúc 9:06

a) Ta có:
\(\overrightarrow{AB'}+\overrightarrow{AC'}=\overrightarrow{BC}+\overrightarrow{AB}+\overrightarrow{BC'}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}\)\(=\overrightarrow{AC}+\overrightarrow{CA}=\overrightarrow{0}\).
Vậy A là trung điểm của B'C'.
b)
A B C B' C' A'
Theo câu a ta chứng minh được A là trung điểm của B'C'.
Tương tự ta chứng minh được: B là trung điểm của A'C'; C là trung điểm của A'B'.
Từ đó suy ra ba đường thẳng AB', BB', CC' là ba đường trung tuyến của tam giác A'B'C' nên ba đường thẳng AA', BB', CC' đồng quy.


Các câu hỏi tương tự
Nguyễn Phi Hòa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Đào Quang Minh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết