Cho tam giác ABC. Dựng \(\overrightarrow{AB'}=\overrightarrow{BC};\overrightarrow{CA'}=\overrightarrow{AB};\overrightarrow{BC'}=\overrightarrow{CA}\)
a) Chứng minh rằng A là trung điểm của B'C'
b) Chứng minh các đường thẳng \(AA';BB'\) và \(CC'\) đồng quy
Cho tam giác ABC. Chứng minh rằng nếu \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\) thì G là trọng tâm của tam giác ABC ?
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh:
\(a.\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=0\)
\(b.\overrightarrow{AM}=\overrightarrow{NB}+\overrightarrow{PC}\)
Cho hai tam giác ABC và A'B'C'. Chứng minh rằng nếu \(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\overrightarrow{0}\) thì hai tam giác đó có cùng trọng tâm ?
Cho tam giác ABC và một điểm M tùy ý . Chứng minh rằng : \(\overrightarrow{4MA}+\overrightarrow{MB}-5\overrightarrow{MC}=4\overrightarrow{CA}+\overrightarrow{CB}\)
cho tam giác ABC, gọi M là điểm trên cạnh BC sao cho\(\overrightarrow{MB}=2\overrightarrow{MC}\) . Chứng minh: \(\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)
cho tam giác ABC có trọng tâm là G và M là trung điểm BC. Khẳng định nào sau đây là sai
A. \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)
B. \(\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AG}\)
C. \(\overrightarrow{GA}=\overrightarrow{BG}+\overrightarrow{GC}\)
D.\(\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GM}\)
giúp mk giải câu C , D thôi cx đc tại cô mk bảo phải cm từng câu cho nên m.n giúp mk vs
Gọi M và N lần lượt là trung điểm các cạnh AB và CD của tứ giác ABCD. Chứng minh rằng :
\(2\overrightarrow{MN}=\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{BC}+\overrightarrow{AD}\)
Cho tam giác ABC trên các đường thẳng BC AC AB lan luot lay cac diem M N P sao \(\overrightarrow{MB}=\overrightarrow{3MC}\)
\(\overrightarrow{NA}=\overrightarrow{3CN}\) , \(\overrightarrow{PA}+\overrightarrow{PC}=\overrightarrow{0}\)
Cm \(\overrightarrow{PM},\overrightarrow{PN}\) theo \(\overrightarrow{AB},\overrightarrow{AC}\)
Cm 3 điểm M N P thẳng hàng