a) Xét ΔAKI và ΔCKM , ta có :
AK = KC ( k là trung điểm của AC )
IK = KM ( gt )
Góc AKI = MKC ( 2 góc đối đỉnh )
=> ΔAKI = ΔCKM (cgc )
b) Ta có : ΔAKI = ΔCKM
=> KMC = KIA ( 2 góc tương ứng )
mà góc KMC và KIA là hai góc ở vị trí so le trong
=> AI // MC
c)Ta có :
+ MC = AI ( ΔAKI = ΔCKM )
+ AI = IB ( I là trung điểm của AB )
=> MC = IB
+ MI // AI => MI // IB
Xét ΔMCI và ΔCIB , có :
MC = IB ( c/m t )
IC là cạnh chung
Góc MCI = CIB ( 2 góc so le trong , MC // IB )
=> ΔMCI = ΔBIC ( cgc )
=> Góc MIC = BCI ( 2 góc tương ứng )
mà MIC và BCI là góc góc ở vị trí so le trong
=> IK // BC
Ta có : IK = \(\frac{MI}{2}\) => IK = \(\frac{1}{2}MI\)
Mà BC = MI ( ΔMCI = ΔBIC )
=> IK = \(\frac{BC}{2}\Rightarrow IK=\frac{1}{2}BC\)
Thầy @phynit có thể giải giúp em không ạ?
Thầy phynit có thể giải giúp em được không ạ?