(Hình bạn tự vẽ nha)
Xét ΔABC có:
\(\widehat{C} < \widehat{B}\Rightarrow AB< AC\)
Ta có: Trong tam giác đường xiên nào lớn hơn thì có đường chiếu lớn hơn (định lý 2)
⇒HC > HB
(Hình bạn tự vẽ nha)
Xét ΔABC có:
\(\widehat{C} < \widehat{B}\Rightarrow AB< AC\)
Ta có: Trong tam giác đường xiên nào lớn hơn thì có đường chiếu lớn hơn (định lý 2)
⇒HC > HB
cho tam giác abc có góc b =60o; ab=7cm; bc=15cm;vẽ ah vuông góc với bc(h thuộc bc). Lấy điểm m trên hc sao hm=hb
a)so sánh góc bac và góc acb
b)cm tam giác abm là tam giác đều
tam giác abc có phải là tam giác vuông không? vì sao
Cho tam giác ABC cân tại A. Gọi M, N là trung điểm các cạnh AB, AC. Các đường thẳng vuông góc với AB, AC tại M; N cắt nhau tại điểm O, AO cắt BC tại H. Chứng minh:
a) AMO =ANO
b) AH là phân giác của góc A
c) HB = HC và AH⊥ BC
d) So sánh OC và HB
Cho tam giác ABC có góc B › góc C. Từ A kẻ đường thẳng vuông góc với BC, ( H thuộc BC )
a, Chứng minh rằng HB ‹ HC
b, Gọi AD là tia phân giác của góc HAC. Trên cạnh AC lấy điểm E sao cho AE = AH. Chứng minh DH = DE
c, Gọi K là giao điểm của ED và AH. Chứng minh AD vuông góc với CK
cho tam giác ABC có A=90 độ ,AB=3cm,AC=4cm
a,tính BC
b,so sánh góc B,C
c,kẻ tia phân giác góc C cắt AB tại I
từ I kẻ IH vuông góc với BC (H thuộc BC),AC cắt IH tại tại K chứng minh AK=BH
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm. Kẻ đường cao AH vuông góc với BC (H thuộc BC).
a) Tính độ dài BC.
b) Tia phản giác góc HAC cắt cạnh BC tại D. Qua D kẻ DK vuông góc với AC (K thuộc AC). Chứng minh: tam giác AHD = tam giác AKD.
c) Chứng minh: tam giác BAD cân.
d) Tia phân giác góc BAH cắt cạnh BC tại E. Chứng minh: AB+AC=BC+DE.
cho ABC (A=90 độ) BD là tia phân giác của góc B (D thuộc AB). trên tia BC lấy điểm E sao cho BA=BE: a) chứng minh DE vuông góc với BE ;b) chứng minh BD là đường trung trực của AE ;c) kẻ AH vuông góc BC, so sánh EH và EC
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông BC tại H,kẻ HM vuông AB tại M. Trên tia HM lấy E sao cho M là trung điểm của EH .
a, CM AE = AH .
b, Vẽ ta phân giác AI của góc HAC. Lấy K thuộc AC soa cho AK = AH . Cm IK // AB
c,so sánh Hi và IC
d, Kẻ HF vuông tại F, HF cắt AI tại P . CM KP vuông AH
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông BC tại H,kẻ HM vuông AB tại M. Trên tia HM lấy E sao cho M là trung điểm của EH .
a, CM AE = AH .
b, Vẽ ta phân giác AI của góc HAC. Lấy K thuộc AC soa cho AK = AH . Cm IK // AB
c,so sánh Hi và IC
d, Kẻ HF vuông tại F, HF cắt AI tại P . CM KP vuông AH
cho tam giác ABC có AB< AC và AD là tia phân giác góc D (D thuộc BC) . Kẻ AH vuông góc với BC ( H thuộc BC ) và gọi M là trung điểm của BC . Chứng minh rằng : Tia AD nằm giữa hai tia AH và AM