Chứng minh AN/CN=c^2/a^2
Giúp mình nhé!
Chứng minh AN/CN=c^2/a^2
Giúp mình nhé!
Cho tam giác ABC vuông tại A có BD là tia phân giác của góc B ( D thuộc AC).Chứng minh rằng :\(\dfrac{B}{2}\) =\(\dfrac{AC}{BC+AB}\)
Cho tam giác ABC có 3 góc nhọn và các trung tuyến BM và CN vuông góc với nhau. Chứng minh: \(cotC+cotB\ge\dfrac{2}{3}\)
Cho tam giác ABC có đường tròn tiếp xúc với hai cạnh AB, AC và với hai trung tuyến BM, CN( M thuộc AC, N thuộc AB). Chứng minh rằng tam giác ABC cân
Cho tam giác ABC có đường tròn tiếp xúc với hai cạnh AB, AC và với hai trung tuyến BM, CN( M thuộc AC, N thuộc AB). Vì sao từ SAMB = SANC ⇒ AM+MB+AB = AN+NC+AC ?
Cho tam giác ABC nội tiếp (O). Vẽ dây AD // BC.Các tt tại A và B cắt nhau tại E. AC cắt BD tạiI.
1) C/m ABOI nt
2) OI vuông góc EI
3) M e đoạn BE, BD cắt AE tại N. MN cắt AB tại K. C/m KM/KN = BM/AN
Cho tam giác ABC vuông tại A,vẽ đường cao AH:
a)Chứng minh tam giác ABC~tam giác HBA .Từ đó suy ra AB\(^2\)=BH.BC
b)Chứng minh rằng tam giác HBA~tam giác HCA.Từ đó suy ra AH\(^2\)=BH.CH
c)Vẽ HD vuông tại AC tại D.Đường trung tuyến CM của tam giác ABC cắt HD tại N
Chứng Minh: \(\frac{HN}{BM}=\frac{CN}{CM}\) và HN=HD
Qua điểm A nằm ngoài đường tròn (O) Kẻ tiếp tuyến AM,AN với M,N là tiếp điểm. a) CMR: bốn điểm A,M,O,N cùng thuộc 1 đường tròn. b) Vẽ cát tuyến ABC tới (O) sao cho tia AO nằm giữa tia AM và tia AC.Chứng minh rằng: AM2 = = AB.AC c) Gọi H là giao điểm của AO và MN.CMR: 4 điểm B,H,O,C cùng thuộc một đường tròn. d) CMR: HN là tia phân giác của góc BHC.
Cho tam giác ABC có AB ACGH.
1. Chứng minh BH = EC .
2. Vẽ hình bình hành 4EFH . Chứng minh rằng 4F vuông góc với BC.
3. Gọi O là giao điểm các đường trung trực của tam giác ABC, M và N lần lượt là trung điểm của
EH và BC, biết OH = OE . Chứng minh tứ giác AMON là hình bình hành và tính góc BỌC.