a) Xét ΔABD và ΔAED có
AD chung
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))
AD chung
Do đó: ΔABD=ΔAED(c-g-c)
b) Sai đề
a) Xét ΔABD và ΔAED có
AD chung
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))
AD chung
Do đó: ΔABD=ΔAED(c-g-c)
b) Sai đề
cho tam giác ABC có AB<AC ,AD là phân giác góc BAC ,trên AC lấy E sao cho AB =AE.
a chứng minh tam giác ABD =AED
b qua e kẻ đường song song với BC cắt AD tại F.chứng minh tam giác DEF cân
c so sánh DE với CF{ mk cần gấp}
Cho tam giác ABC vuông tại B, AB<BC. tia phân giác góc A cắt BC tại E . trên AC lấy D sao cho AD=AB. tia DE cắt tia AB tại F , G là trung điểm FC. chứng minh
a) tam giác ABE = tam giác ADE
b) AE là trung trực BD
c) DE < EF
d) AG vuông góc CF
cho tam giác abc có ab=6cm ac=8cm bc=10cm
a) hãy chứng minh abc là tam giác vuông
b) trên cạnh bc lấy e sao cho be=ba kẻ ed vuông góc ac (d thuộc ac)
chứng minh rằng bd là tia phân giác của b
c) gọi f là giao điểm của ed và ba .chứng minh rằng tam giác dec = tam giác daf từ đó suy ra df> de
d) cmr:ad vuông góc với cf
Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.
a) Chứng minh rằng: BE = CD; AD = AE.
b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.
:)) giúp mính nhé!! Hehe
cho tam giác ABC có AB =Ac ,AD là tia phan giác của góc BAC 'D e BC
a. cm tam giác ADB = tam giác ADC
b. trên AB và AC lần lượt lấy 2 điểm M,N sao ch AM=AN cm AD vuông góc vs MN
c. Gọi O là trung điểm của BM . trên tia đối của OD lấy điểm P sao cho OD=OP cm p'm'n thẳng hàng
Cho tam giác ABC có góc A nhỏ hơn 90 độ . Vẽ ra phía ngoài của tam giác đó hai đoạn thẳng AD vuông góc và bằng AB ; AE vuông góc và bằng AC . Gọi H là trung điểm của BC .
Chứng minh rằng tia HA vuông góc với DE
Cho tam giác ABC vuông tại A, có đường phân giác BD. Kẻ DE vuông góc với BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF=CE. Chứng minh rằng:
a) △ABD = △EBD
b) △CDF là tam giác cân
c) E, D, F thẳng hàng và BD ⊥ CF
d) 2(ad+af)>cf
CHO TAM GIÁC ABC VUÔNG TẠI B VÀ AC = 2AB . KẺ TIA PHÂN GIÁC AE (E THUỘC BC). GỌI D LÀ TRUNG ĐIỂM CỦA AC. a) CHỨNG MINH TAM GIÁC AEB = TAM GIÁC AED b) CHỨNG MINH EA=EC c) CHỨNG MINH TAM GIÁC ABD ĐỀU (M.N ƠI GIÚP MIK VỚI, MINK ĐANG GẤP)
Cho ABC có . Vẽ đường phân giác AD (D BC). Qua D dựng đường thẳng vuông góc với AC tại M cắt đường thẳng AB tại N. Gọi I là giao điểm của AD và BM. a. Chứng minh BAD = MAD b. Chứng minh AD là trung trực của BM c. Chứng minh ANC là tam giác đều d. Chứng minh BI < ND