a/ \(AE=AC-CE=15-9=6\) (cm)
\(\dfrac{AD}{AB}=\dfrac{4}{10}=\dfrac{2}{5}\)
\(\dfrac{AE}{AC}=\dfrac{6}{15}=\dfrac{2}{5}\)
\(\to\dfrac{AD}{AB}=\dfrac{AE}{EC}\) (ĐL Talet đảo)
\(\to DE//BC\)
b/ \(DI//BM\)
\(\to\dfrac{AD}{AB}=\dfrac{DI}{BM}\) (ĐL Talet đảo)
\(EI//CM\)
\(\to\dfrac{AE}{AC}=\dfrac{EI}{CM}\)
mà \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
\(\to\dfrac{DI}{BM}=\dfrac{EI}{CM}\)
mà \(BM=CM\)
\(\to DI=EI\) mà \(I\) là nằm giữa \(D,E\)
\(\to I\) là trung điểm \(DE\)