Xét \(\Delta ABC\) có:
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A.
=> \(\widehat{B}=\widehat{C}\) (tính chất tam giác cân)
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\left(1\right).\)
Xét \(\Delta ADE\) có:
\(AD=AE\left(gt\right)\)
=> \(\Delta ADE\) cân tại A.
=> \(\widehat{D}=\widehat{E}\) (tính chất tam giác cân)
=> \(\widehat{D}=\widehat{E}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)
Từ \(\left(1\right)và\left(2\right)\Rightarrow\widehat{B}=\widehat{D}.\)
Mà 2 góc này nằm ở vị trí đồng vị.
=> \(DE\) // \(BC\left(đpcm\right).\)
Chúc bạn học tốt!