Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pé Ngốc

cho tam giác ABC cân tại A . trên tia đối của tia BC lấy D , trên tia đối của tia CV lấy E sao cho CE =BD. a) c/m tam giác ADE cân .b) vẽ BH vuông góc với AD, CK vuông góc với AE cắt nhau tại I. c/m BH =CK .c) gọi M là trung điểm BC .c/m A,M,I thẳng hàng .d) c/m HK song song BC

Nguyễn Lê Phước Thịnh
31 tháng 5 2020 lúc 11:51

a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^0\)(hai góc kề bù)

\(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có

AB=AC(ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

⇒AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(định nghĩa tam giác cân)

b) Ta có: ΔADE cân tại A(cmt)

\(\widehat{ADE}=\widehat{AED}\)(hai góc ở đáy)

hay \(\widehat{HDB}=\widehat{KEC}\)

Xét ΔHBD vuông tại H và ΔKCE vuông tại K có

BD=CE(gt)

\(\widehat{HDB}=\widehat{KEC}\)(cmt)

Do đó: ΔHBD=ΔKCE(cạnh huyền-góc nhọn)

⇒BH=CK(hai cạnh tương ứng)

c) Ta có: ΔHBD=ΔKCE(cmt)

\(\widehat{HBD}=\widehat{KCE}\)(hai góc tương ứng)

\(\widehat{IBC}=\widehat{HBD}\)(hai góc đối đỉnh)

\(\widehat{ICB}=\widehat{KCE}\)(hai góc đối đỉnh)

nên \(\widehat{IBC}=\widehat{ICB}\)

Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)

nên ΔIBC cân tại I(định lí đảo của tam giác cân)

⇒IB=IC

hay I nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(2)

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(3)

Từ (1),(2) và (3) suy ra A,M,I thẳng hàng(đpcm)

d) Ta có: ΔIBC cân tại I(cmt)

\(\widehat{IBC}=\frac{180^0-\widehat{I}}{2}\)(số đo của một góc ở đáy trong ΔIBC cân tại I)(4)

Ta có: IB+HB=IH(B nằm giữa H và I)

IC+KC=IK(C nằm giữa K và I)

mà IB=IC(cmt)

và HB=KC(cmt)

nên IH=IK

Xét ΔIHK có IH=IK(cmt)

nên ΔIHK cân tại I(định nghĩa tam giác cân)

hay \(\widehat{IHK}=\frac{180^0-\widehat{I}}{2}\)(số đo của một góc ở đáy trong ΔIHK cân tại I)(5)

Từ (4) và (5) suy ra \(\widehat{IBC}=\widehat{IHK}\)

\(\widehat{IBC}\)\(\widehat{IHK}\) là hai góc ở vị trí đồng vị

nên BC//HK(dấu hiệu nhận biết hai đường thẳng song song)


Các câu hỏi tương tự
Pé Ngốc
Xem chi tiết
Phương Thảo
Xem chi tiết
Vũ Đẹp Trai
Xem chi tiết
thảo my
Xem chi tiết
Bùi Lê Trâm Anh
Xem chi tiết
Dương Quốc Thành
Xem chi tiết
TRẦN NGỌC NHI
Xem chi tiết
Chung Lệ Đề
Xem chi tiết
Trần Quỳnh Hương
Xem chi tiết