Xét ΔABE và △ACF Có
AB=AC(△ABC cân tại A)
góc ABC = góc ACB (△ABC cân tại A)
BE= CF(gt)
\(\Rightarrow\Delta ABE=\Delta ACF\left(c-g-c\right)\)
\(\Rightarrow AE=AF\) (Hai cạnh tương ứng)
\(\Rightarrow\Delta AEFcân\)
Xét ΔABE và △ACF Có
AB=AC(△ABC cân tại A)
góc ABC = góc ACB (△ABC cân tại A)
BE= CF(gt)
\(\Rightarrow\Delta ABE=\Delta ACF\left(c-g-c\right)\)
\(\Rightarrow AE=AF\) (Hai cạnh tương ứng)
\(\Rightarrow\Delta AEFcân\)
cho tam giác ABC có 3 góc nhọn. và AB<AC
kẻ BE vuông góc với Ac tại E, CF vuông góc với AB tại F, BE cắt CF tại H
kẻ HQ song song với AC, HP song song với AB ( Q thuộc AB, P thuộc AC)
a) cm: Tam giác AHQ=tam giác HAP
b) cho M là trung điểm của BC.
cm: tam giác MEF cân và góc AEF=góc ABC
c) cm: HA+HB+HC<2/3(AB+AC+BC)
Cho tam giác ABC cân tại A (BAC <90°), Kẻ BI vuông góc với AC tại 1. Trên cạnh BC lấy điểm M bất kỳ (M khác B và C). Gọi D, E, F lần lượt là chân đường vuông góc kẻ từ M đến các cạnh AB, AC, BI. 1) Chứng minh rằng tam giác DBM = tam giác FMB. 2) Cho BC = 10cm, CI = 6cm. Tính tổng MD + ME. 3) Trên tia đối của tia CA lấy điểm K sao cho CK = EI. Chứng minh BC đi qua trung điểm của đoạn thẳng DK.
Cho tam giác nhon PQF (PQ<QF).Gọi d là trung điểm của PF.Trên tia đối của DQ lấy điểm E sao cho DQ=DE
a)CMR tam giác QPD = tam giác EFD
b)Vẽ PM vuống góc với QD tại M , FN vuông góc với DE TẠI N .CMR PM=FN VÀ PM //FN
c)Kẻ QH vuông góc với PD tại H , EK vuống góc với DF tại K.QH cát PM TẠI O . EK CẮT FN TẠI I.CMR O D I THẲNG HÀNG
Cho tam giác nhon PQF (PQ<QF).Gọi d là trung điểm của PF.Trên tia đối của DQ lấy điểm E sao cho DQ=DE
a)CMR tam giác QPD = tam giác EFD
b)Vẽ PM vuống góc với QD tại M , FN vuông góc với DE TẠI N .CMR PM=FN VÀ PM //FN
c)Kẻ QH vuông góc với PD tại H , EK vuống góc với DF tại K.QH cát PM TẠI O . EK CẮT FN TẠI I.CMR O D I THẲNG HÀNG
Cho tam giác cân ABC ;đáy BC,góc BAC=20o . Trên cạnh AB lấy điểm E sao cho góc BCE = 50o . Trên cạnh AC lấy điểm D sao cho góc CBD= 60o . Qua D kẻ đường thẳng song song với BC , nó cắt AB tại F . Gọi O là giao điểm của BD và CF
a. Chứng minh tam giác AFC= tam giác ADB
b. CM tam giac OFD và tam giác OBC là các tam giác đều
c. Tính góc EOB
d. CM tam giác EFD = tam giác EOD
e. Tính góc BDE
Cho tam giác ABC vuông cân tại A. Trên cạnh AB, AC lần lượt lấy các điểm M, N sao cho góc ABN = góc ACM = 15 độ. Gọi I là giao điểm của MC và NB. Gọi H,E,D lần lượt là trung điểm của BC,BN,CM.
a) So sánh tam giác ABN và tam giác ACM.
b) C/m tam giác ADE đều.
c) C/m 3 điểm A,I,H thẳng hàng.
d) Tính góc DHE
cho tam giác ABC cân tại A. Trên cạnh BC lấy D (D không trùng B và BD<BC/2 ). trên tia đói của tia CB lấy E sao cho BD=CE, các đường vuông góc với BC kẻ từ D và E cắt đường thẳng AB và AC lần lượt tại M và N.
1) cm : DM=EN.
2) gọi I là giao điểm của MN và BC,CM : ME//DN.
3) gọi K là trung điểm BC. Kẻ đường thẳng vuông góc với MN tại I cắt đường thẳng AK tại O. CM: 1/CK^2 - 1/OC^2 = 1/AC^2
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a, Chứng minh MD=NE
b, MN giao DE tại I. CM I là trung điểm của DE
c, Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB sao cho chúng cắt nhau tại O. chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC