a) Xét ΔABE và ΔADC:
AE = AC ( GT ΔABC cân )
Góc BAC: chung
AE = AD (GT)
⇒ ΔABE = ΔADC (c - g - c)
=> BE = CD
b) ΔABE = ΔACD (cmt)
\(\Rightarrow\widehat{ABE}=\widehat{ACD}\) (2 góc tương ứng)
c) Ta có: \(\left\{{}\begin{matrix}\widehat{ABE}+\widehat{KBC}=\widehat{ABC}\\\widehat{ACD}+\widehat{KCB}=\widehat{ACB}\end{matrix}\right.\)
Mà: \(\left\{{}\begin{matrix}\widehat{ABE}=\widehat{ACD}\left(cmt\right)\\\widehat{ABC}=\widehat{ACB}\left(GT\right)\end{matrix}\right.\)
\(\Rightarrow\widehat{KBC}=\widehat{KCB}\)
=> Tam giác KBC cân tại K