Bài 6. Cho tam giác ABC vuông tại A a) Nếu AB = 9cm; BC = 15 cm. Tính AC và so sánh các góc của tam giác ABC. b) Trên tia đối của tia CA lấy điểm D sao cho CA = CD , Qua D kẻ đường thẳng d vuông góc với AD. Gọi E là giao của BC và d. Qua C kẻ đường thẳng vuông góc với BE cắt đường thẳng d tại F. Chứng minh tam giác ABC- tam giác DEC và tam giác BEF cân. c) So sánh BF và AD d) Tìm điều kiện của tam giác ABC để tam giác EFB đều
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểmD Trên canh AC thy dim E sao cho AD= AE
a) C/M rằng BE = CD
b) C/M rằng góc ABE bằng góc ACD.
c) Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gi? Vi sao?
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng
Cho tam giác ABC có góc B › góc C. Từ A kẻ đường thẳng vuông góc với BC, ( H thuộc BC )
a, Chứng minh rằng HB ‹ HC
b, Gọi AD là tia phân giác của góc HAC. Trên cạnh AC lấy điểm E sao cho AE = AH. Chứng minh DH = DE
c, Gọi K là giao điểm của ED và AH. Chứng minh AD vuông góc với CK
cho tam giác abc cân tại a ab ac 25cm bc=30cm. gọi h là trung điểm của bc.
a, chứng minh ah vuông góc vs bc.
b. tính AH
c, lấy điểm D trên BC và điểm E trên AC sao cho AD = AE. tính tam giác ODB = tam giác OEC.
MN GIÚP MIK VỚI CẦN GẤP.
Cho tam giác ABC cân tại A(AB=AC). D và E lần lượt là trung điểm của AB và AC.
a)ΔABE=ΔACD
b)BE=CD
c)Gọi K là giao điểm của BE và CD. C/minh ΔKBC cân tại K.
d) AK là tia p/g của góc BAC
Cho tam giác abc vuông tại a có ab = 3 cm, bc = 5 cm. Lấy điểm D trên cạnh bc sao cho bd=ba. Kẻ đường thẳng vuông góc với bc tại D cắt ac tại E
a) tính độ dài đoạn thẳng ac
b) Chứng minh BE là tia phân giác của abc
c) so sánh ae và ec
d) chứng minh be là đường trung trực của ad
Vẽ hình và giải giúp mình nha
cảm ơn
Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên BC lấy E sao cho AB = AE. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Gọi I là giao điểm của BD với FC. CMR:
a) Tam giác ABD = Tam giác EBD và DE vuông góc BC
b) BD là đường trung trực của đoạn thẳng AE
c) Ba điểm D; E; F thẳng hàng
d) Điểm D cách đều ba cạnh của tam giác AEI