Cho ∆ABC cân tại A (góc A > 900 ). Từ B kẻ đường thẳng vuông góc với AC tại điểm E, Từ C kẻ đường thẳng vuông góc với AB tại điểm D.Gọi giao điểm của BE và CD là O
a) Chứng minh ∆𝐵𝐶𝐸 = ∆𝐶𝐵𝐷.
b) Gọi I là trung điểm của BC. Chứng minh ∆𝐼𝐸𝐷 là tam giác cân.
c) Chứng minh OI vuông góc với E D.
d) Trên tia CE lấy điểm F sao cho E là trung điểm của CF. So sánh: DBC và EFB
a: Xét ΔBCE vuông tại E và ΔCBD vuông tại D có
BC chung
góc CBE chung
Do đó: ΔBCE=ΔCBD
b: Ta có: ΔCDB vuông tại D
mà DI là trung tuyến
nên DI=BC/2(1)
Ta có: ΔCEB vuông tại E
mà EI là trung tuyến
nên EI=BC/2(2)
Từ (1) và (2) suy ra IE=ID