Cho tam giác ABC vuông tại A , đường trung tuyến AM . Kẻ MH vuông góc với AB ( H thuộc AB ) , MK vuông góc với AC ( K thuộc AC )
a) Chứng minh : Tứ giác AKMH là hình chữ nhật
b) E là trung điểm của MH . Chứng minh tứ giác BHKM là hình bình hành
c ) Chứng minh 3 điểm B,E,K thẳng hàng
d) Gọi F là trung điểm của MK . Đường thảng HK cắt AE tại I và À tại J . Chứng minh HI = KJ
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH, gọi D là trung điểm của AC, lấy điểm E đối xứng với H qua D.
a) Chứng minh tứ giác AHCE là hình chữ nhật
b) Qua A kẻ AI song song với HE (I ∈ đường thẳng BC). Chứng minh tứ giác AEHI là hình bình hành.
c) Trên tia đối của tia HA lấy điểm K sao cho AH = HK. Chứng minh AK là tia phân giác của góc IAC.
d) Tìm điều kiện của tam giác ABC để tứ giác CAIK là hình vuông, khi đó tứ giác AHCE là hình gì?
cho tam giác abc vuông tại a có ab<ac . gọi m là trung điểm của bc , kẻ md vuông góc với ab tại d , me vuông góc với ac tại e
a) chứng minh am = de
b) chứng minh tứ giác dmce là hình bình hành
c) gọi ah là đường cao của tam giác abc (h thuộc bc) . chứng minh tứ giác dhme là hình thang cân
Cho tam giác ABC và trung tuyến AM. Điểm O bất kì thuộc AM. F là giao điểm của BO và AC, E là giao điểm của CO và AB. Từ M kẻ đường thẳng song song với AC cắt AB tại H và kẻ đường thẳng song song với OB cắt AC tại K. Chứng minh:
a, EF // HK
b, EF//BC
. Cho ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, AC, BC.
⦁ Chứng minh: Tứ giác MNCB là hình thang, tứ giác BMNP là hình bình hành.
⦁ Gọi O là trung điểm của MN. Chứng minh: 3 điểm A, O, P thẳng hàng.
⦁ Trên tia đối của tia NP lấy điểm F sao cho NF = NP. Trên tia đối của tia MP lấy điểm E sao cho ME = MP. Chứng minh: E đối xứng với F qua A.
⦁ ABC cần thêm điều kiện gì để BE + CF = BC. Chứng minh.
Bài 5. Cho tam giác ABC nhọn (AB<AC). Trên cạnh AB, AC lấy các điểm D và E sao cho BD =
CE. Gọi M, N, P, Q là trung điểm các cạnh BC,CD,DE,BE.
1) Chứng minh tứ giác MNPQ là hình thoi.
2) Đường thẳng MP cắt cạnh AC tại F.Chứng minh AB+AF = CF và MP song song với phân
giác của góc BAC
3) Đường thẳng NQ cắt AB, AC tại H,K. Chứng minh tam giác AHK cân tại A
giúp câu bc vs ạ
Cho hình bình hành ABCD. Gọi o là giao điểm hai đường thẳng ac và bd. Qua điểm O vẽ đường thẳng song song với AB cắt hai cạnh AD, BC lần lượt tại M, N. Trên AB, CD lần lượt lấy các điểm P, Q sao cho AP = CQ. Chứng minh:
a) Các tứ giác AMNB, APCQ là hình bình hành
b) MP // NQ; MQ = NP
ho tam giác ABC có ba góc nhọn (AB < AC), đường cao AH. Gọi M, N, P là trung điểm của các cạnh AB, AC, BC, MN cắt AC tại I. a) Chứng minh I là trung điểm của AH b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành. c) Xác định dạng của tứ giác MHPN d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng
cho tam giác ABC vuông tại A, D là trung điểm BC. từ D kẻ DE vuông góc AB(E thuộc AB), kẻ DF vuông góc AC(F thuộc AC)
a, chứng minh tứ giác AEDF là HCN
b, gọi I là điểm đối xứng với D qua F. chứng minh tứ giác ABDI là hình bình hành
c, kẻ AH vuông góc BC(H thuộc BC). chứng minh: AD2=EH2+HF2