Bài 5. Cho tam giác ABC nhọn (AB<AC). Trên cạnh AB, AC lấy các điểm D và E sao cho BD =
CE. Gọi M, N, P, Q là trung điểm các cạnh BC,CD,DE,BE.
1) Chứng minh tứ giác MNPQ là hình thoi.
2) Đường thẳng MP cắt cạnh AC tại F.Chứng minh AB+AF = CF và MP song song với phân
giác của góc BAC
3) Đường thẳng NQ cắt AB, AC tại H,K. Chứng minh tam giác AHK cân tại A
giúp câu bc vs ạ
Đọc tiếpĐúng 0Bình luận (2) vũ tiến đạt12 tháng 11 2017 lúc 12:52
ta có hình vẽ
a) Do P là trung điểm của DE (gt), Q là trung điểm của BE (gt) nên PQ là đường trung bình của tam giác BED, suy ra PQ=1/2BD.
Chứng minh tương tự MN =1/2 BD, NP = 1/2CE và MQ = 1/2CE.
Mặt khác BD = CE (gt)
Do đó MN = NP = PQ = QM
Vậy tứ giác MNPQ là hình thoi.
b) Do PN // AC, PQ // AB nên (hai góc có cạnh tướng ứng song song).
Gọi giao điểm của MP với AB là R, ta có ...