a)Trong tam giác vuông ABC có:
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0 \)
Hay \(60^0+\widehat{ABC}+90^0=180^0 \)
\(\Rightarrow \)\(\Rightarrow \) \(\widehat{ABC}=180^0-60^0-90^0=30^0\)
Vậy \(\widehat{ABC}=30^0 (đpcm)\)
b)\(\Delta ABC \) có \(\widehat{A}=60^0 ;\widehat{B}=30^0; \widehat{C}=90^0 \)mà AE là tia phân giác của \(\widehat{A} \)
\(\Rightarrow \) \(\widehat{A1}= \widehat{A2} \)\(=\frac{60}{2}=30^0\)
\(\Rightarrow \)\(\widehat{A2}= \widehat{B1} \)\(=30^0\)
Xét \(\Delta ABC \) và \(\Delta BAD \) có
\(\widehat{D}= \widehat{C}=90^0 \)
\(\widehat{A2}= \widehat{B1} \)\(=30^0\)
AB chung
\(\Rightarrow \)\(\Delta ABC \)=\(\Delta BAD \)
\(\Rightarrow \)AD=BC (đpcm)
c)