Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kamui

Cho tam giác ABC vuông tại C có góc A = 60 độ . Tia phân giác của góc BAC cắt BC ở E . Kẻ EK vuông góc với AB ( K thuộc AB ) . Kẻ BD vuông góc với tia AE ( D thuộc tia AE ) . Chứng minh :
a) AC = AK
b) AE là đường trung trực của đoạn thẳng CK
c ) KA = KB
d ) AC < EB

Câu C mình thấy nhiều người là tma giác ABK cân tại B là sai nhé -_- ABK là ba điểm nhé -_- Giải giùm mình đi ; ; 

nhoc quay pha
6 tháng 8 2016 lúc 20:39

A B C D E K H

a) gọi giao điểm của AE và CK là H

xét 2 tam giác vuông AKE và ACE có:

AE(chung)

KAE=CAE(gt)

=> ΔAKE=ΔACE(CH-GN)

=> AC=AK

b)xét ΔAKH và ΔACH có:

AC=AK(theo câu a)

AH(chung)

KAH=CAH(gt)

=> ΔAKH=ΔACH(c.g.c)

=>\(\begin{cases}HK=HC\\AHK=AHC\end{cases}\)

mà AHK+AHC=\(180^o\)

=> AHK=AHC=\(180^o:2=90^o\)

ta có: AE_|_CK và HK=HC

=> AE là đường trung trực của CK

c)

ΔABC vuông tại C có góc A=\(60^o\) => góc B=\(30^o\)

=>AC=1/2 AB

=>AK=1/2AB

ta có: BK=AB-AK=AB-1/2AB=1/2AB

=> AK=BK

d)ΔABC vuông tại C  có A=\(60^o\)

=> AC=AK=BK=1/2AB(theo câu c)

ta có Δ AKE vuông tại K=> BK<BE

=> AC<BE(đfcm)


Các câu hỏi tương tự
Kamui
Xem chi tiết
tran thi linh chi
Xem chi tiết
Gia Tuệ
Xem chi tiết
hoang thi thuy
Xem chi tiết
Nguyễn Thắng Thịnh
Xem chi tiết
Lê Thị Kiều Oanh
Xem chi tiết
Phạm Mỹ Lệ
Xem chi tiết
Lê Thu Phương
Xem chi tiết
Nguyễn Mai Nhan Ngọc
Xem chi tiết