cho \(\sqrt{x-3}-\sqrt[3]{y^2+5y+7}=\sqrt{y-1}-\sqrt[3]{x^2+x+1}\) . tìm max Q=\(y^2-x^2+3x+4\sqrt{y}+4\)
Giải phương trình 1, \(x^2+9x+7=\left(2x+1\right)\sqrt{2x^2+4x+5}\)
2, GPT \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)
3. GHPT \(\left\{{}\begin{matrix}x^2-2y-1=2\sqrt{5y+8}+\sqrt{7x-1}\\\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}\sqrt{x-3}-\sqrt[3]{y^2+5y+7}=\sqrt{y-1}\sqrt[3]{x^2+x+1}\\\sqrt{x+4}+2y=9\end{matrix}\right.\)
Giải phương trình \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)
Làm 1 trong 2 phần cũng ok nhé
cho \(x=\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(y=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
tính giá trị bt: \(A=\dfrac{xy-1}{x+y}-\dfrac{1-xy}{2x-y}\)
a, Giải phương trình: \(x^4\sqrt{x+3}=2x^4-2016x+2016\)
b, Giải hệ phương trình: \(\left\{{}\begin{matrix}x+3\sqrt{xy+x-y^2-y}=5y+4\\\sqrt{4y^2-x-2}+\sqrt{y-1}=x-1\end{matrix}\right.\)
Cho x,y,z >0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\). Tìm GTLN của biểu thức \(P=\dfrac{1}{\sqrt{5x^2+2xy+2y^2}}+\dfrac{1}{\sqrt{5y^2+2yz+2z^2}}+\dfrac{1}{\sqrt{5z^2+2xz+2x^2}}\)
a. Tìm x thoả man đk \(\sqrt{\frac{4x+3}{x+1}}=3\)
b. Giải pt: \(\frac{1}{\sqrt{x+5}+\sqrt{x+4}}+\frac{1}{\sqrt{x+4}+\sqrt{x+3}}+\frac{1}{\sqrt{x+3}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+1}}+\frac{1}{\sqrt{x+1}+\sqrt{x}}=1\)
c. Tìm các cặp số nguyên dương(x,y) thoả mãn: \(6x+5y+18=2xy\)
Giải hệ pt
1/\(\left\{{}\begin{matrix}4x\sqrt{y+1}+8x=\left(4x^2-4x-3\right)\sqrt{x+1}\\\dfrac{x}{x+1}+x^2=\left(y+2\right)\sqrt{\left(x+1\right)\left(y+1\right)}\end{matrix}\right.\)
2/\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)
3/\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)
4/\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)
m.n giúp e mấy bài này vs ạ!!
1) \(\dfrac{x-3x^2}{2}+\sqrt{2x^4-x^3+7x^2-3x+3}=2\)
2) \(1+\sqrt{\dfrac{x-2}{1-x}}=\dfrac{2x^2-2x+1}{x^2-2x+2}\)
3) \(x+y+z+\dfrac{3}{x-1}+\dfrac{3}{y-1}+\dfrac{3}{z-1}=2\left(\sqrt{x+2}+\sqrt{y+2}+\sqrt{z+2}\right)\) với x ,y ,z > 1
4) \(\sqrt[3]{x+6}+x^2=7-\sqrt{x-1}\)
5) \(x^4-2x^3+x-\sqrt{2\left(x^2-x\right)}=0\)