Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Bùi Đại Hiệp

cho số thực x,y,z thoả mãn 3(x2+y2+z2)=(x+y+z)2 và x2018+y2018+z2018=27100

Tính giá trị của A= \(\left(\frac{x+2y-4z}{3}\right)^{2018}\) +2019

Khôi Bùi
14 tháng 3 2019 lúc 11:10

Phân tích GT đầu , ta có : x = y = z

Rồi làm như thường

nguyễn ngọc dinh
14 tháng 3 2019 lúc 11:11

mình sửa đề nhé~

Có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x;y;z\)

\(\Rightarrow2.\left(x^2+y^2+z^2\right)-2xy-2yz-2xz\ge0\forall x;y;z\)

\(\Leftrightarrow2.\left(x^2+y^2+z^2\right)\ge2xy+2yz+2xz\forall x;y;z\)

\(\Leftrightarrow3.\left(x^2+y^2+z^2\right)\ge x^2+y^2+z^2+2xy+2yz+2xz\forall x;y;z\)

\(\Leftrightarrow3.\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\forall x;y;z\)

\(3.\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)

\(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=z\\x=z\end{matrix}\right.\Leftrightarrow x=y=z\)

Có: \(x^{2018}+y^{2018}+z^{2018}=27^{673}\)

\(\Leftrightarrow3.x^{2018}=27^{673}\)

\(\Leftrightarrow x^{2018}=3^{2018}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

đến đây bạn tự làm nốt nhé


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
MInemy Nguyễn
Xem chi tiết
チュオン コンダ ンダ
Xem chi tiết
Nguyễn Thanh Hiền
Xem chi tiết
Thanh Tùng
Xem chi tiết
Nguyễn Khánh Huyền
Xem chi tiết
Bùi Thanh Tâm
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Phương Nguyễn Ngọc Mai
Xem chi tiết