Cho hai số dương a, b. Chứng minh rằng:
a) Nếu a > b thì \(\sqrt{a}>\sqrt{b}\)
b) Nếu \(\sqrt{a}>\sqrt{b}\) thì a >b
Chứng minh rằng nếu \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{a+b+c}\) thì \(\sqrt[n]{a}+\sqrt[n]{b}+\sqrt[n]{c}=\sqrt[n]{a+b+c}\) với n là số nguyên dương lẻ.
Cho a, b, c là các số dương thoả mãn: a+b+c=1. Chứng minh bất đẳng thức: \(\sqrt{ab+c}\) + \(\sqrt{bc+a}\) + \(\sqrt{ca+b}\) ≤ 2
Cho các số thực dương a, b, c thỏa mãn: abc + a + b = 3ab. Chứng minh rằng:\(\sqrt{\frac{ab}{a+b+1}}+\sqrt{\frac{b}{bc+b+1}}+\sqrt{\frac{a}{ca+c+1}}\ge\sqrt{3}\)
Cho biểu thức:
R=\(\dfrac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\dfrac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\)
a)Rút gọn R
b)Chứng minh rằng nếu R=b+81/b-81 thì khi đó b/a là 1 số nguyên chia hết cho 3
Cho các số thực dương a, b ; a \(\ne\) b. Chứng minh:
\(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)
Cho các số dương a,b,c thỏa mãn ab+bc+ca=1
Chứng minh bất đẳng thức \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le2\left(a+b+c\right)\)
Cho các số a,b,c dương. Chứng minh rằng \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2\sqrt{a}}{a^3+b^2}+\frac{2\sqrt{b}}{b^3+c^2}+\frac{2\sqrt{c}}{c^3+a^2}\)
Cho các số a,b,c dương. Chứng minh rằng \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2\sqrt{a}}{a^3+b^2}+\frac{2\sqrt{b}}{b^3+c^2}+\frac{2\sqrt{c}}{c^3+a^2}\)
Cho các số a,b,c dương. Chứng minh rằng \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2\sqrt{a}}{a^3+b^2}+\frac{2\sqrt{b}}{b^3+c^2}+\frac{2\sqrt{c}}{c^3+a^2}\)