Cho biểu thức R=\(\dfrac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\dfrac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\)
a) Rút gọn biểu thức R.
b)Tìm a ∈ Z để R có giá trị nguyên
c)Chứng minh rằng :R=\(\dfrac{b+81}{b-81}\) thì \(\dfrac{b}{a}\) là một số nguyên chia hết cho 3
bài 1 cho biểu thức P = \(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)
a. rút gọn P
b. với giá trị nào của a thì P = 7
c. với giá trị nào của a thì P > 6
bài 2 cho biểu thức P=\(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\cdot\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)
a. tìm điều kiện để P có nghĩa
b. rút gọn P
c. tính giá trị của P khi a = \(2\sqrt{3}\) và b = \(\sqrt{3}\)
bài 3 cho biểu thức P = \(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
a. rút gọn biểu thức
b. chứng minh rằng P>0 với mọi x khác 1
1,so sánh:
\(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}va\dfrac{12}{3-\sqrt{6}}+\sqrt{6}\)
2.trục căn thức ở mẫu:
a. A=\(\dfrac{\sqrt{a+3}+\sqrt{a-3}}{\sqrt{a+3}-\sqrt{a-3}}\)
b.B=\(\dfrac{\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}\)
3, rút gọn
A=\(\dfrac{\sqrt{2}+1}{\sqrt{2}-1}-\dfrac{\sqrt{2}-2}{1-\sqrt{2}}\)
B=\(\dfrac{\left(a\sqrt{b}+b\right)\left(\sqrt{a}+\sqrt{b}\right)}{a-b}.\sqrt{\dfrac{ab+b^2-2\sqrt{ab^3}}{a\left(a+2\sqrt{b}\right)+b}}\)
C=\(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)
Cho biểu thức
\(P=\left(\dfrac{\sqrt{a}+1}{\sqrt{ab}+1}+\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}-1\right):\left(\dfrac{\sqrt{a+1}}{\sqrt{ab}+1}-\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)
a) Rút gọn P
b) Tính giá trị của P nếu \(a=2-\sqrt{3}\) và \(b=\dfrac{\sqrt{3}-1}{1+\sqrt{3}}\)
c) Tìm GTNN của P nếu \(\sqrt{a}+\sqrt{b}=4\)
Rút gọn biểu thức sau:
\(A=\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}-1}+1}\\ B=\sqrt{\dfrac{5+2\sqrt{6}}{5-\sqrt{6}}}+\sqrt{\dfrac{5-2\sqrt{6}}{5+\sqrt{6}}}\)
Bài 1: Rút gọn các biểu thức
a)\(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
b)\(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
c)\(\dfrac{x+\sqrt{xy}}{y+\sqrt{xy}}\)
d)\(\dfrac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\)
e)\(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}\left(\sqrt{x}-\sqrt{y}\right)^2\)
câu 1 : Thực hiện phép tính :
1. \(\sqrt{0,36.100}\) 2. \(\sqrt[3]{-0,008}\) 3.\(\sqrt{12}+6\sqrt{3}+\sqrt{27}\)
4. \(\dfrac{1-\sqrt{2}}{2\sqrt{3}-3\sqrt{2}}\)
câu 2 : Rút gọn biểu thức
1. \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}\) ( a,b > 0 )
2.(\(\left(\sqrt{ab}-\sqrt{\dfrac{a}{b}}+\dfrac{1}{a}\sqrt{4ab}+\dfrac{1}{b}\sqrt{\dfrac{b}{a}}\right):\)\(\left(1+\dfrac{2}{a}-\dfrac{1}{b}+\dfrac{1}{ab}\right)\)với a,b > 0
câu 3 : Tìm x
1. \(\sqrt{4x}+\sqrt{\dfrac{x}{4}}+\dfrac{1}{2}\sqrt{49x}=6\)
2. 3x + \(\sqrt{3x-7}\)=7
câu 4 : Cho biểu thức : A = \(\left[1:\left(1-\dfrac{\sqrt{a}}{1+\sqrt{a}}\right)\right].\left[\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right]\)
1. Tìm điều kiện của a để A có nghĩa.
2. Rút gọn biểu thức A.
3. Với giá trị nguyên nào của a thì A có giá trị nguyên?
câu 5 : Chứng tỏ rằng : \(\sqrt[3]{70-\sqrt{4901}}+\sqrt[3]{70+\sqrt{4901}}=5\)
cho biểu thức: A=\(\left(\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\dfrac{a}{b-a}\right):\left(\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}-\dfrac{a}{a+b+2\sqrt{ab}}\right)\)với a và b là các số dương khác nhau
a) rút gọn biểu thức: A-\(\dfrac{a+b+2\sqrt{ab}}{b-a}\)
b) tính giá trị của A khi a=\(7-4\sqrt{3}\)và b=\(7+4\sqrt{3}\)
Rút gọn biểu thức:
Q = \(\dfrac{\sqrt[3]{a^4}+\sqrt[3]{a^2b^2}+\sqrt[3]{b^4}}{\sqrt[3]{a^2}+\sqrt[3]{ab}+\sqrt[3]{b^2}}\)