Cho 3 số thực a,b,c dương . CMR :
\(\sqrt{\dfrac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\dfrac{b^3}{b^3+\left(c+a\right)^3}}+\sqrt{\dfrac{c^3}{c^3+\left(a+b\right)^3}}\)
Cho biểu thức :
A= \(\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\dfrac{x^2-2x+1}{2}\right)\)
a) Xác định x để A tồn tại .
b) Rút gọn .
c) Tìm x thuộc Z để A nhận giá trị nguyên .
d) Tìm x để A nhận giá trị âm .
Bài 1: Chứng minh rằng \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}>=\frac{1}{2}\)
với a, b là các số dương
Cho biểu thức A=\(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}\) với \(a>0,a\ne1\)
a Rút gọn biểu thức A
b Tìm các giá trị của a để A<0
Cho a,b thỏa mãn a2+b2=1. Chứng minh:a\(\sqrt{b+1}\) +b\(\sqrt{a+1}\)<=\(\sqrt{2+\sqrt{ }2}\)
3) phân tích đa thức P (x) = (3x-2)3 + ( 1-2x )3 + ( 1-x )3 thành nhân tử
4) cho abc là 3 số thực thỏa mãn đk a+b+c+\(\sqrt{abc}\) = 4. tính giá trị biểu thức :
A = \(\sqrt{a\left(4-b\right)\left(4-c\right)}\) + \(\sqrt{b\left(4-c\right)\left(4-a\right)}\)+ \(\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}\)
P= \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
a/Rút gọn
b/ Biết a>1 so sánh P với l P l
(\(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\)-\(\dfrac{\sqrt{a}-1}{\sqrt{a+1}}\)) : \(\dfrac{a-1}{4\left(a+1\right)}\) Rút gọn biểu thức với a ≥0; a≠1
Cho a,b.c>0 và \(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\).Tính M=\(\dfrac{1+a}{\sqrt{a}+\sqrt{b}}+\dfrac{1+b}{\sqrt{b}+\sqrt{c}}+\dfrac{1+c}{\sqrt{c}+\sqrt{a}}\)