Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
camcon

Cho sina+ cosa = \(cot\dfrac{a}{2}\) với 0<a<pi. Tính \(tan\left(\dfrac{a+2013\pi}{2}\right)\)

Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 0:28

\(\Leftrightarrow2\cdot sin\left(\dfrac{a}{2}\right)\cdot cos\left(\dfrac{a}{2}\right)+2\cdot cos^2\left(\dfrac{a}{2}\right)-1-\dfrac{cos\left(\dfrac{a}{2}\right)}{sin\left(\dfrac{a}{2}\right)}=0\)

=>\(2\cdot cos\left(\dfrac{a}{2}\right)\left(sin\left(\dfrac{a}{2}\right)+cos\left(\dfrac{a}{2}\right)\right)=\dfrac{cos\left(\dfrac{a}{2}\right)+sin\left(\dfrac{a}{2}\right)}{sin\left(\dfrac{a}{2}\right)}\)

=>\(\left(cos\left(\dfrac{a}{2}\right)+sin\left(\dfrac{a}{2}\right)\right)\left(sin\left(a\right)-1\right)=0\)

=>cos(a/2)=-sin(a/2) hoặc sin a-1=0

=>cot(a/2)=-1 hoặc sina =1

=>a=-pi/2(loại) hoặc a=pi/2

\(tan\left(a+\dfrac{2013pi}{2}\right)=tan\left(a+\dfrac{pi}{2}\right)=tan\left(\dfrac{pi}{2}+\dfrac{pi}{2}\right)=tanpi=0\)


Các câu hỏi tương tự
Dương Nguyễn
Xem chi tiết
Kamato Heiji
Xem chi tiết
Nguyễn Hoàng Long
Xem chi tiết
Hòa Lê Minh
Xem chi tiết
Nguyễn Thái Sơn
Xem chi tiết
phamthiminhanh
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Ái Nữ
Xem chi tiết
Ái Nữ
Xem chi tiết