Theo hệ thức vi-et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=4m-m^2\end{matrix}\right.\)
\(C=\left|x_1-x_2\right|\)
\(C^2=\left(x_1-x_2\right)^2=x_1^2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(\Rightarrow C^2=\left(2m+2\right)^2-4\left(4m-m^2\right)\)
\(=4m^2+8m+4-16m+4m^2\)
\(=8m^2-8m+4\)
\(=2\left(4m^2-4m+1\right)+2\)
\(=2\left(2m-1\right)^2+2\ge2\)
\(\Rightarrow C\ge\sqrt{2}\)
Vậy GTNN của C là \(\sqrt{2}\) . Dấu \("="\) xảy ra khi \(m=\frac{1}{2}\)