Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Julian Edward

cho pt \(\frac{mx-m+3}{x+1}=1\) (m là tham số). Có bao nhiêu giá trị của m để pt đã cho vô nghiệm???

(giải cụ thể nhaaaa, thenk kiu )

Nguyễn Việt Lâm
17 tháng 9 2019 lúc 23:52

ĐKXĐ: \(x\ne-1\)

\(\Leftrightarrow mx-m+3=x+1\)

\(\Leftrightarrow x\left(m-1\right)=m-2\)

- Với \(m=1\) pt \(\Leftrightarrow0=-1\) (vô nghiệm)

- Với \(m\ne1\Rightarrow x=\frac{m-2}{m-1}\)

Để pt vô nghiệm thì \(\frac{m-2}{m-1}=-1\Leftrightarrow m-2=1-m\Rightarrow m=\frac{3}{2}\)

Vậy \(\left[{}\begin{matrix}m=1\\m=\frac{3}{2}\end{matrix}\right.\) thì pt vô nghiệm


Các câu hỏi tương tự
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết