Hướng dẫn: nhân cả tử và mẫu của phân số đầu với x4, làm tương tự với 3 phân số còn lại, đặt nhân tử chung, phần còn lại trong ngoặc ghép cặp x1 và x2; x3 và x4, sau đó quy đồng từng cặp và Viet
Hướng dẫn: nhân cả tử và mẫu của phân số đầu với x4, làm tương tự với 3 phân số còn lại, đặt nhân tử chung, phần còn lại trong ngoặc ghép cặp x1 và x2; x3 và x4, sau đó quy đồng từng cặp và Viet
tìm m để phương trình \(\left(x^2-1\right)\left(x+3\right)\left(x+5\right)=m\) có 4 nghiệm phân biệt \(x_1,x_2,x_3,x_4\) thỏa mãn \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)
tìm giá trị của m để phương trình \(\left(x^2-1\right)\left(x+3\right)\left(x+5\right)=m\) (m là tham số ) có 4 nghiệm phân biệt \(x_1,x_2,x_3,x_4\) thỏa mãn \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)
cho phương trình \(x^4-2mx^2+2m+6=0\). Tìm giá trị của m để phương trình có 4 nghiệm phân biệt \(x_1,x_2,x_3,x_4\) sao cho \(x_1< x_2< x_3< x_4\) và \(x_4-2x_3+2x_2-x_1=0\)
Cho phương trình \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)=m\). Giả sử rằng phương trình có 4 nghiệm \(x_1,x_2,x_3,x_4\) đều khác 0, tính giá trị của biểu thức \(Q=\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}\) theo m
Cho phương trình \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)=m\). Giả sử rằng phương trình có 4 nghiệm \(x_1,x_2,x_3,x_4\) đều khác 0, tính giá trị của biểu thức \(Q=\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}\) theo m
Cho phương trình: \(x^2+\left(2m+1\right)x+m^2-1=0\) (1) ( x là ẩn số). Tìm m để phương trình (1) có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn: \(\left(x_1-x_2\right)^2=x_1-5x_2\)
cho phương trình\(x^2-\left(2m+1\right)x+m^2-m=0\) tìm các giá tri của m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn điều kiện:\(\left(x_1^2+mx_1+x_2-m^2+m\right)\left(x_2^2+mx_2+x_1-m^2+m\right)=-9\)
Tìm giá trị của tham số m để pt \(x^2-2\left(m+1\right)x+m=0\)có 2 nghiệm phân biệt thỏa \(\frac{2x_1-1}{x_2}+\frac{2x_2-1}{x_1}=x_1x_2+\frac{3}{x_1x_2}\)
Cho PT: \(x^2-\left(3m-1\right)x+2m^2-m=0\). Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn: \(x_1=x_2^2\)